Ejemplo n.º 1
0
 def check_roots_are_roots(self, rec, verbose=False):
     """
     check that  embedding_root_real, and embedding_root_image  approximate a root of field_poly
     """
     poly = PolynomialRing(ZZ, "x")(rec['field_poly'])
     dpoly = poly.derivative()
     dbroots = db.mf_hecke_cc.search(
         {'hecke_orbit_code': rec['hecke_orbit_code']},
         ["embedding_root_real", "embedding_root_imag"])
     dbroots = [
         CCC(root["embedding_root_real"], root["embedding_root_imag"])
         for root in dbroots
     ]
     if len(dbroots) != poly.degree():
         if verbose:
             print("Wrong number of roots")
         return False
     for r in dbroots:
         # f is irreducible, so all roots are simple and checking relative error is the way to go
         if poly(r) / dpoly(r) > 1e-11:
             # It's still possible that the roots are correct; it could just be a problem of numerical instability
             print(r, poly(r) / dpoly(r))
             break
     else:
         return True
     roots = poly.roots(CCC, multiplicities=False)
     # greedily match.  The degrees are all at most 20, so it's okay to use a quadratic algorithm
     while len(roots) > 0:
         best_dist = infinity
         r = roots[0]
         for i, s in enumerate(dbroots):
             dist = abs(r - s)
             if dist < best_dist:
                 best_dist, best_i = dist, i
         # The dim 1 case where poly=x is handled correctly in the earlier loop, so r != 0.
         if best_dist / abs(r) > 1e-13:
             if verbose:
                 print("Roots mismatch", sorted(roots), sorted(dbroots))
             return False
         roots.pop(0)
         dbroots.pop(best_i)
     return True
Ejemplo n.º 2
0
 def check_roots_are_roots(self, rec, verbose=False):
     """
     check that  embedding_root_real, and embedding_root_image  approximate a root of field_poly
     """
     poly = PolynomialRing(ZZ, "x")(rec['field_poly'])
     dpoly = poly.derivative()
     dbroots = db.mf_hecke_cc.search({'hecke_orbit_code': rec['hecke_orbit_code']}, ["embedding_root_real", "embedding_root_imag"])
     dbroots = [CCC(root["embedding_root_real"], root["embedding_root_imag"]) for root in dbroots]
     if len(dbroots) != poly.degree():
         if verbose:
             print "Wrong number of roots"
         return False
     for r in dbroots:
         # f is irreducible, so all roots are simple and checking relative error is the way to go
         if poly(r)/dpoly(r) > 1e-11:
             # It's still possible that the roots are correct; it could just be a problem of numerical instability
             print r, poly(r)/dpoly(r)
             break
     else:
         return True
     roots = poly.roots(CCC, multiplicities=False)
     # greedily match.  The degrees are all at most 20, so it's okay to use a quadratic algorithm
     while len(roots) > 0:
         best_dist = infinity
         r = roots[0]
         for i, s in enumerate(dbroots):
             dist = abs(r-s)
             if dist < best_dist:
                 best_dist, best_i = dist, i
         # The dim 1 case where poly=x is handled correctly in the earlier loop, so r != 0.
         if best_dist/abs(r) > 1e-13:
             if verbose:
                 print "Roots mismatch", sorted(roots), sorted(dbroots)
             return False
         roots.pop(0)
         dbroots.pop(best_i)
     return True