Ejemplo n.º 1
0
    def _dim_new_eisenstein(self):
        """
        Return the dimension of the new Eisenstein subspace, computed
        by enumerating all Eisenstein series of the appropriate level.

        EXAMPLES::

            sage: m = ModularForms(Gamma0(11), 4)
            sage: m._dim_new_eisenstein()
            0
            sage: m = ModularForms(Gamma0(11), 2)
            sage: m._dim_new_eisenstein()
            1
            sage: m = ModularForms(DirichletGroup(36).0,5); m
            Modular Forms space of dimension 28, character [-1, 1] and weight 5 over Rational Field
            sage: m._dim_new_eisenstein()
            2
            sage: m._dim_eisenstein()
            8
        """
        if arithgroup.is_Gamma0(self.group()) and self.weight() == 2:
            if is_prime(self.level()):
                d = 1
            else:
                d = 0
        else:
            E = self.eisenstein_series()
            d = len([g for g in E if g.new_level() == self.level()])
        return d
Ejemplo n.º 2
0
    def _dim_new_eisenstein(self):
        """
        Return the dimension of the new Eisenstein subspace, computed
        by enumerating all Eisenstein series of the appropriate level.

        EXAMPLES::

            sage: m = ModularForms(Gamma0(11), 4)
            sage: m._dim_new_eisenstein()
            0
            sage: m = ModularForms(Gamma0(11), 2)
            sage: m._dim_new_eisenstein()
            1
            sage: m = ModularForms(DirichletGroup(36).0,5); m
            Modular Forms space of dimension 28, character [-1, 1] and weight 5 over Rational Field
            sage: m._dim_new_eisenstein()
            2
            sage: m._dim_eisenstein()
            8
        """
        if arithgroup.is_Gamma0(self.group()) and self.weight() == 2:
            if is_prime(self.level()):
                d = 1
            else:
                d = 0
        else:
            E = self.eisenstein_series()
            d = len([g for g in E if g.new_level() == self.level()])
        return d
Ejemplo n.º 3
0
    def _dim_new_eisenstein(self):
        """
        Compute the dimension of the Eisenstein submodule.

        EXAMPLES::

            sage: m = ModularForms(Gamma0(11), 4)
            sage: m._dim_new_eisenstein()
            0
            sage: m = ModularForms(Gamma0(11), 2)
            sage: m._dim_new_eisenstein()
            1
        """
        try:
            return self.__the_dim_new_eisenstein
        except AttributeError:
            if arithgroup.is_Gamma0(self.group()) and self.weight() == 2:
                if is_prime(self.level()):
                    d = 1
                else:
                    d = 0
            else:
                E = self.eisenstein_series()
                d = len([g for g in E if g.new_level() == self.level()])
            self.__the_dim_new_eisenstein = d
        return self.__the_dim_new_eisenstein
Ejemplo n.º 4
0
    def _dim_new_eisenstein(self):
        """
        Compute the dimension of the Eisenstein submodule.

        EXAMPLES::

            sage: m = ModularForms(Gamma0(11), 4)
            sage: m._dim_new_eisenstein()
            0
            sage: m = ModularForms(Gamma0(11), 2)
            sage: m._dim_new_eisenstein()
            1
        """
        try:
            return self.__the_dim_new_eisenstein
        except AttributeError:
            if arithgroup.is_Gamma0(self.group()) and self.weight() == 2:
                if is_prime(self.level()):
                    d = 1
                else:
                    d = 0
            else:
                E = self.eisenstein_series()
                d = len([g for g in E if g.new_level() == self.level()])
            self.__the_dim_new_eisenstein = d
        return self.__the_dim_new_eisenstein
Ejemplo n.º 5
0
    def apply_sparse(self, x):
        """
        Return the image of x under self. If x is not in self.domain(),
        raise a TypeError.

        EXAMPLES:
            sage: M = ModularSymbols(17,4,-1)
            sage: T = M.hecke_operator(4)
            sage: T.apply_sparse(M.0)
            64*[X^2,(1,8)] + 24*[X^2,(1,10)] - 9*[X^2,(1,13)] + 37*[X^2,(1,16)]
            sage: [ T.apply_sparse(x) == T.hecke_module_morphism()(x) for x in M.basis() ]
            [True, True, True, True]
            sage: N = ModularSymbols(17,4,1)
            sage: T.apply_sparse(N.0)
            Traceback (most recent call last):
            ...
            TypeError: x (=[X^2,(0,1)]) must be in Modular Symbols space of dimension 4 for Gamma_0(17) of weight 4 with sign -1 over Rational Field
        """
        if x not in self.domain():
            raise TypeError("x (=%s) must be in %s"%(x, self.domain()))

        # old version just to check for correctness
        #return self.hecke_module_morphism()(x)

        p = self.index()
        if is_prime(p):
            H = heilbronn.HeilbronnCremona(p)
        else:
            H = heilbronn.HeilbronnMerel(p)

        M = self.parent().module()
        mod2term = M._mod2term
        syms = M.manin_symbols()
        K = M.base_ring()
        R = M.manin_gens_to_basis()

        W = R.new_matrix(nrows=1, ncols = R.nrows())

        B = M.manin_basis()

        #from sage.all import cputime
        #t = cputime()
        v = x.element()
        for i in v.nonzero_positions():
            for h in H:
                entries = syms.apply(B[i], h)
                for k, w in entries:
                    f, s = mod2term[k]
                    if s:
                        W[0,f] += s*K(w)*v[i]

        #print 'sym', cputime(t)
        #t = cputime()
        ans = M( v.parent()((W * R).row(0)) )
        #print 'mul', cputime(t)
        #print 'density: ', len(W.nonzero_positions())/(W.nrows()*float(W.ncols()))

        return ans
Ejemplo n.º 6
0
    def is_primitive(self, return_base=False):
        r"""
        A pillowcase cover is primitive if it does not cover an other pillowcase
        cover.
        """
        from sage.arith.all import is_prime
        if is_prime(self.degree()):
            return True

        return bool(gap.IsPrimitive(self.monodromy()))
Ejemplo n.º 7
0
    def is_primitive(self, return_base=False):
        r"""
        A pillowcase cover is primitive if it does not cover an other pillowcase
        cover.
        """
        from sage.arith.all import is_prime
        if is_prime(self.degree()):
            return True

        return bool(gap.IsPrimitive(self.monodromy()))
Ejemplo n.º 8
0
    def apply_sparse(self, x):
        """
        Return the image of ``x`` under ``self``.

        If ``x`` is not in ``self.domain()``, raise a ``TypeError``.

        EXAMPLES::

            sage: M = ModularSymbols(17,4,-1)
            sage: T = M.hecke_operator(4)
            sage: T.apply_sparse(M.0)
            64*[X^2,(1,8)] + 24*[X^2,(1,10)] - 9*[X^2,(1,13)] + 37*[X^2,(1,16)]
            sage: [T.apply_sparse(x) == T.hecke_module_morphism()(x) for x in M.basis()]
            [True, True, True, True]
            sage: N = ModularSymbols(17,4,1)
            sage: T.apply_sparse(N.0)
            Traceback (most recent call last):
            ...
            TypeError: x (=[X^2,(0,1)]) must be in Modular Symbols space
            of dimension 4 for Gamma_0(17) of weight 4 with sign -1
            over Rational Field
        """
        if x not in self.domain():
            raise TypeError("x (={}) must be in {}".format(x, self.domain()))

        p = self.index()
        if is_prime(p):
            H = heilbronn.HeilbronnCremona(p)
        else:
            H = heilbronn.HeilbronnMerel(p)

        M = self.parent().module()
        mod2term = M._mod2term
        syms = M.manin_symbols()
        K = M.base_ring()
        R = M.manin_gens_to_basis()

        W = R.new_matrix(nrows=1, ncols=R.nrows())

        B = M.manin_basis()

        v = x.element()
        for i in v.nonzero_positions():
            for h in H:
                entries = syms.apply(B[i], h)
                for k, w in entries:
                    f, s = mod2term[k]
                    if s:
                        W[0, f] += s * K(w) * v[i]

        return M(v.parent()((W * R).row(0)))
Ejemplo n.º 9
0
    def __init__(self, order, prime, varnames, category=None):
        """
        mod p cohomology of ZZ/p*ZZ
        """
        assert prime == order  # TODO: allow prime != order
        assert is_prime(prime)
        self._n = order
        self._varnames = varnames
        self._prime = prime

        if category is None:
            category = YacopLeftModuleAlgebras(
                SteenrodAlgebra(prime, generic=True))
        SteenrodModuleBase.__init__(self, BZpBasis(self), category=category)
Ejemplo n.º 10
0
def CO_delta(r, p, N, eps):
    r"""
    This is used as an intermediate value in computations related to
    the paper of Cohen-Oesterle.

    INPUT:


    -  ``r`` - positive integer

    -  ``p`` - a prime

    -  ``N`` - positive integer

    -  ``eps`` - character


    OUTPUT: element of the base ring of the character

    EXAMPLES::

        sage: G.<eps> = DirichletGroup(7)
        sage: sage.modular.dims.CO_delta(1,5,7,eps^3)
        2
    """
    if not is_prime(p):
        raise ValueError("p must be prime")
    K = eps.base_ring()
    if p % 4 == 3:
        return K(0)
    if p == 2:
        if r == 1:
            return K(1)
        return K(0)
    # interesting case: p=1(mod 4).
    # omega is a primitive 4th root of unity mod p.
    omega = (IntegerModRing(p).unit_gens()[0])**((p - 1) // 4)
    # this n is within a p-power root of a "local" 4th root of 1 modulo p.
    n = Mod(int(omega.crt(Mod(1, N // (p**r)))), N)
    n = n**(p**(r - 1))  # this is correct now
    t = eps(n)
    if t == K(1):
        return K(2)
    if t == K(-1):
        return K(-2)
    return K(0)
Ejemplo n.º 11
0
Archivo: dims.py Proyecto: drupel/sage
def CO_delta(r,p,N,eps):
    r"""
    This is used as an intermediate value in computations related to
    the paper of Cohen-Oesterle.

    INPUT:


    -  ``r`` - positive integer

    -  ``p`` - a prime

    -  ``N`` - positive integer

    -  ``eps`` - character


    OUTPUT: element of the base ring of the character

    EXAMPLES::

        sage: G.<eps> = DirichletGroup(7)
        sage: sage.modular.dims.CO_delta(1,5,7,eps^3)
        2
    """
    if not is_prime(p):
        raise ValueError("p must be prime")
    K = eps.base_ring()
    if p%4 == 3:
        return K(0)
    if p==2:
        if r==1:
            return K(1)
        return K(0)
    # interesting case: p=1(mod 4).
    # omega is a primitive 4th root of unity mod p.
    omega = (IntegerModRing(p).unit_gens()[0])**((p-1)//4)
    # this n is within a p-power root of a "local" 4th root of 1 modulo p.
    n = Mod(int(omega.crt(Mod(1,N//(p**r)))),N)
    n = n**(p**(r-1))   # this is correct now
    t = eps(n)
    if t==K(1):
        return K(2)
    if t==K(-1):
        return K(-2)
    return K(0)
Ejemplo n.º 12
0
    def _element_constructor_(self, e):
        """
        TESTS::

            sage: P = Sets().example()
            sage: P._element_constructor_(13) == 13
            True
            sage: P._element_constructor_(13).parent()
            Integer Ring
            sage: P._element_constructor_(14)
            Traceback (most recent call last):
            ...
            AssertionError: 14 is not a prime number
        """
        p = self.element_class(e)
        assert is_prime(p), "%s is not a prime number"%(p)
        return p
Ejemplo n.º 13
0
    def _element_constructor_(self, e):
        """
        TESTS::

            sage: P = Sets().example()
            sage: P._element_constructor_(13) == 13
            True
            sage: P._element_constructor_(13).parent()
            Integer Ring
            sage: P._element_constructor_(14)
            Traceback (most recent call last):
            ...
            AssertionError: 14 is not a prime number
        """
        p = self.element_class(e)
        assert is_prime(p), "%s is not a prime number" % (p)
        return p
Ejemplo n.º 14
0
def eisen(p):
    """
    Return the Eisenstein number `n` which is the numerator of `(p-1)/12`.

    INPUT:

    - ``p`` -- a prime

    OUTPUT: Integer

    EXAMPLES::

        sage: [(p, sage.modular.dims.eisen(p)) for p in prime_range(24)]
        [(2, 1), (3, 1), (5, 1), (7, 1), (11, 5), (13, 1), (17, 4),
         (19, 3), (23, 11)]
    """
    if not is_prime(p):
        raise ValueError("p must be prime")
    return frac(p - 1, 12).numerator()
Ejemplo n.º 15
0
Archivo: dims.py Proyecto: drupel/sage
def eisen(p):
    """
    Return the Eisenstein number `n` which is the numerator of
    `(p-1)/12`.

    INPUT:


    -  ``p`` - a prime


    OUTPUT: Integer

    EXAMPLES::

        sage: [(p,sage.modular.dims.eisen(p)) for p in prime_range(24)]
        [(2, 1), (3, 1), (5, 1), (7, 1), (11, 5), (13, 1), (17, 4), (19, 3), (23, 11)]
    """
    if not is_prime(p):
        raise ValueError("p must be prime")
    return frac(p-1,12).numerator()
Ejemplo n.º 16
0
def is_blum_prime(n):
    r"""
    Determine whether or not ``n`` is a Blum prime.

    INPUT:

    - ``n`` a positive prime.

    OUTPUT:

    - ``True`` if ``n`` is a Blum prime; ``False`` otherwise.

    Let `n` be a positive prime. Then `n` is a Blum prime if `n` is
    congruent to 3 modulo 4, i.e. `n \equiv 3 \pmod{4}`.

    EXAMPLES:

    Testing some integers to see if they are Blum primes::

        sage: from sage.crypto.util import is_blum_prime
        sage: from sage.crypto.util import random_blum_prime
        sage: is_blum_prime(101)
        False
        sage: is_blum_prime(7)
        True
        sage: p = random_blum_prime(10**3, 10**5)
        sage: is_blum_prime(p)
        True
    """
    if n < 0:
        return False
    if is_prime(n):
        if mod(n, 4).lift() == 3:
            return True
        else:
            return False
    else:
        return False
Ejemplo n.º 17
0
def is_blum_prime(n):
    r"""
    Determine whether or not ``n`` is a Blum prime.

    INPUT:

    - ``n`` a positive prime.

    OUTPUT:

    - ``True`` if ``n`` is a Blum prime; ``False`` otherwise.

    Let `n` be a positive prime. Then `n` is a Blum prime if `n` is
    congruent to 3 modulo 4, i.e. `n \equiv 3 \pmod{4}`.

    EXAMPLES:

    Testing some integers to see if they are Blum primes::

        sage: from sage.crypto.util import is_blum_prime
        sage: from sage.crypto.util import random_blum_prime
        sage: is_blum_prime(101)
        False
        sage: is_blum_prime(7)
        True
        sage: p = random_blum_prime(10**3, 10**5)
        sage: is_blum_prime(p)
        True
    """
    if n < 0:
        return False
    if is_prime(n):
        if mod(n, 4).lift() == 3:
            return True
        else:
            return False
    else:
        return False
Ejemplo n.º 18
0
def benchmark(pbound=[3, 2**10],
              nbound=[3, 2**8],
              cbound=[1, Infinity],
              obound=[1, Infinity],
              loops=10,
              tloop=Infinity,
              tmax=Infinity,
              prime=False,
              even=False,
              check=False,
              fname=None,
              write=False,
              overwrite=False,
              verbose=True,
              skip_pari=False,
              skip_magma=False,
              skip_rains=False,
              skip_kummer=False):
    if write:
        mode = 'w' if overwrite else 'a'
        f = open(fname, mode, 0)
    else:
        f = sys.stdout
    pmin, pmax = pbound
    nmin, nmax = nbound
    omin, omax = obound
    cmin, cmax = cbound
    M = Magma()
    for p in xrange(pmin, pmax):
        p = ZZ(p)
        if not p.is_prime():
            continue
        for n in xrange(nmin, nmax):
            n = ZZ(n)
            if (prime == 1 and not is_prime(n)) or (prime == 2
                                                    and not is_prime_power(n)):
                continue
            if n < 2:
                continue
            if n % p == 0:
                continue
            if (not even) and (n % 2 == 0):
                continue
            o, G = find_root_order(p, [n, n], n, verbose=False)
            m = G[0][0].parent().order()
            c = Mod(p, n).multiplicative_order()
            if verbose:
                sys.stdout.write("\r" + " " * 79)
                print("\rp = {}, n = {}, (o = {}, c = {})".format(p, n, o, c))
            if verbose:
                t = mytime()
                sys.stdout.write("Constructing fields ({})".format(
                    time.strftime("%c")))
                sys.stdout.flush()
            q = p**n
            k = GF(q, name='z')
            k_rand = GF(q, modulus='random', name='z')
            k_flint = GF_flint(p, k.modulus(), name='z')
            if verbose > 1:
                sys.stdout.write("\ntotal: {}s\n".format(mytime(t)))
                sys.stdout.flush()
            # Magma
            if verbose:
                sys.stdout.write("\r" + " " * 79)
                sys.stdout.write("\rMagma ({})".format(time.strftime("%c")))
                sys.stdout.flush()
            tloops = 0
            for l in xrange(loops):
                if skip_magma:
                    break
                if (o > omax) or (o == p):
                    break
                # let's assume that launching a new Magma instance is cheaper
                # than computing random irreducible polynomials
                try:
                    M._start()
                except OSError as err:
                    # but it can also cause fork issues...
                    # let's accept this
                    # and fail as the situation will only worsen
                    # unless it is "just" a memory issue
                    # which should be mitigated by COW but is not
                    #print(err)
                    if err.errno == errno.ENOMEM:
                        break
                    else:
                        raise
                try:
                    k_magma = M(k)
                    k_rand_magma = M(k_rand)
                    if tloop is not Infinity:
                        alarm(tloop)
                    t = mytime()
                    k_magma.Embed(k_rand_magma, nvals=0)
                    #M._eval_line("Embed(k_magma, k_rand_magma);", wait_for_prompt=False)
                    tloops += mytime(t)
                except TypeError:
                    # sage/magma interface sometimes gets confused
                    pass
                except (KeyboardInterrupt, AlarmInterrupt):
                    # sage interface eats KeyboardInterrupt
                    # and AlarmInterrupt derives from it
                    tloops = 0
                    break
                finally:
                    if tloop is not Infinity:
                        cancel_alarm()
                    M.quit()
                    # sage pexpect interface leaves zombies around
                    try:
                        while os.waitpid(-1, os.WNOHANG)[0]:
                            pass
                    # but sometimes every child is already buried
                    # and we get an ECHILD error...
                    except OSError:
                        pass
                if tloops > tmax:
                    break
            tmagma = tloops / (l + 1)
            if verbose > 1:
                sys.stdout.write("\ntotal: {}s, per loop: {}s\n".format(
                    tloops, tloops / (l + 1)))
                sys.stdout.flush()
            # Rains algorithms
            if verbose:
                sys.stdout.write("\r" + " " * 79)
                sys.stdout.write("\rCyclotomic Rains ({})".format(
                    time.strftime("%c")))
                sys.stdout.flush()
            trains = []
            tloops = 0
            for l in xrange(loops):
                if skip_rains:
                    break
                if (o > omax) or (o == p):
                    break
                try:
                    if tloop is not Infinity:
                        alarm(tloop)
                    t = mytime()
                    a, b = find_gens_cyclorains(k_flint,
                                                k_flint,
                                                use_lucas=False)
                    tloops += mytime(t)
                except (KeyboardInterrupt, AlarmInterrupt):
                    tloops = 0
                    break
                finally:
                    if tloop is not Infinity:
                        cancel_alarm()
                if check and (l == 0 or check > 1):
                    g = a.minpoly()
                    if g.degree() != n:
                        raise RuntimeError("wrong degree")
                    if g != b.minpoly():
                        raise RuntimeError("different minpolys")
                if tloops > tmax:
                    break
            trains.append(tloops / (l + 1))
            if verbose > 1:
                sys.stdout.write("\ntotal: {}s, per loop: {}s\n".format(
                    tloops, tloops / (l + 1)))
                sys.stdout.flush()
            # Conic Rains
            if verbose:
                sys.stdout.write("\r" + " " * 79)
                sys.stdout.write("\rConic Rains ({})".format(
                    time.strftime("%c")))
                sys.stdout.flush()
            tloops = 0
            for l in xrange(loops):
                if skip_rains:
                    break
                if (o != 2) or (o > omax) or (o == p):
                    break
                try:
                    if tloop is not Infinity:
                        alarm(tloop)
                    t = mytime()
                    a, b = find_gens_cyclorains(k_flint,
                                                k_flint,
                                                use_lucas=True)
                    tloops += mytime(t)
                except (KeyboardInterrupt, AlarmInterrupt):
                    tloops = 0
                    break
                finally:
                    if tloop is not Infinity:
                        cancel_alarm()
                if check and (l == 0 or check > 1):
                    g = a.minpoly()
                    if g.degree() != n:
                        raise RuntimeError("wrong degree")
                    if g != b.minpoly():
                        raise RuntimeError("different minpolys")
                if tloops > tmax:
                    break
            trains.append(tloops / (l + 1))
            if verbose > 1:
                sys.stdout.write("\ntotal: {}s, per loop: {}s\n".format(
                    tloops, tloops / (l + 1)))
                sys.stdout.flush()
            # Elliptic Rains
            if verbose:
                sys.stdout.write("\r" + " " * 79)
                sys.stdout.write("\rElliptic Rains ({})".format(
                    time.strftime("%c")))
                sys.stdout.flush()
            tloops = 0
            for l in xrange(loops):
                if skip_rains:
                    break
                try:
                    if tloop is not Infinity:
                        alarm(tloop)
                    t = mytime()
                    a, b = find_gens_ellrains(k_flint, k_flint)
                    tloops += mytime(t)
                except RuntimeError:
                    # sometimes no suitable elliptic curve exists
                    pass
                except (KeyboardInterrupt, AlarmInterrupt):
                    tloops = 0
                    break
                finally:
                    if tloop is not Infinity:
                        cancel_alarm()
                if check and (l == 0 or check > 1):
                    g = a.minpoly()
                    if g.degree() != n:
                        raise RuntimeError("wrong degree")
                    if g != b.minpoly():
                        raise RuntimeError("different minpolys")
                if tloops > tmax:
                    break
            trains.append(tloops / (l + 1))
            if verbose > 1:
                sys.stdout.write("\ntotal: {}s, per loop: {}s\n".format(
                    tloops, tloops / (l + 1)))
                sys.stdout.flush()
            # PARI/GP
            if verbose:
                sys.stdout.write("\r" + " " * 79)
                sys.stdout.write("\rPARI/GP ({})".format(time.strftime("%c")))
                sys.stdout.flush()
            tloops = 0
            for l in xrange(loops):
                if skip_pari:
                    break
                if c < cmin or c > cmax:
                    break
                try:
                    if tloop is not Infinity:
                        alarm(tloop)
                    t = mytime()
                    a, b = find_gens_pari(k, k)
                    tloops += mytime(t)
                except (KeyboardInterrupt, AlarmInterrupt):
                    tloops = 0
                    break
                finally:
                    if tloop is not Infinity:
                        cancel_alarm()
                if check and (l == 0 or check > 1):
                    g = a.minpoly()
                    if g.degree() != n:
                        raise RuntimeError("wrong degree")
                    if g != b.minpoly():
                        raise RuntimeError("different minpolys")
                if tloops > tmax:
                    break
            tpari = tloops / (l + 1)
            # Kummer algorithms
            tkummer = []
            # only linalg and modcomp implemented for c==1
            for i, algo in enumerate(kummer_algolist[2 * (c == 1):-2 *
                                                     (c == 1) - 1]):
                if verbose:
                    sys.stdout.write("\r" + " " * 79)
                    sys.stdout.write("\rKummer {} ({})".format(
                        kummer_namelist[2 * (c == 1) + i],
                        time.strftime("%c")))
                    sys.stdout.flush()
                tloops = 0
                for l in xrange(loops):
                    if skip_kummer:
                        break
                    if c < cmin or c > cmax:
                        break
                    try:
                        if tloop is not Infinity:
                            alarm(tloop)
                        t = mytime()
                        a, b = find_gens_kummer(k_flint, k_flint, n, algo)
                        tloops += mytime(t)
                    except (KeyboardInterrupt, AlarmInterrupt):
                        tloops = 0
                        break
                    finally:
                        if tloop is not Infinity:
                            cancel_alarm()
                    if check and (l == 0 or check > 1):
                        g = a.minpoly()
                        if g.degree() != n:
                            raise RuntimeError("wrong degree")
                        if g != b.minpoly():
                            raise RuntimeError("different minpolys")
                    if tloops > tmax:
                        break
                tkummer.append(tloops / (l + 1))
                if verbose > 1:
                    sys.stdout.write("\ntotal: {}s, per loop: {}s\n".format(
                        tloops, tloops / (l + 1)))
                    sys.stdout.flush()
            tkummer = 2 * (c == 1) * [0] + tkummer + 2 * (c == 1) * [0]
            if verbose:
                sys.stdout.write("\r")
                sys.stdout.flush()
            f.write(("{} {} ({}, {})" + " {}" + " {}" * len(trains) + " {}" +
                     " {}" * len(tkummer) + "\n").format(
                         p, n, o, c, *([tmagma] + trains + [tpari] + tkummer)))
    if write:
        f.close()
Ejemplo n.º 19
0
    def pthpowers(self, p, Bound):
        """
        Find the indices of proveably all pth powers in the recurrence sequence bounded by Bound.

        Let `u_n` be a binary recurrence sequence.  A ``p`` th power in `u_n` is a solution
        to `u_n = y^p` for some integer `y`.  There are only finitely many ``p`` th powers in
        any recurrence sequence [SS].

        INPUT:

        - ``p`` - a rational prime integer (the fixed p in `u_n = y^p`)

        - ``Bound`` - a natural number (the maximum index `n` in `u_n = y^p` that is checked).

        OUTPUT:

        - A list of the indices of all ``p`` th powers less bounded by ``Bound``.  If the sequence is degenerate and there are many ``p`` th powers, raises ``ValueError``.

        EXAMPLES::

            sage: R = BinaryRecurrenceSequence(1,1)        #the Fibonacci sequence
            sage: R.pthpowers(2, 10**30)        # long time (7 seconds) -- in fact these are all squares, c.f. [BMS06]
            [0, 1, 2, 12]

            sage: S = BinaryRecurrenceSequence(8,1) #a Lucas sequence
            sage: S.pthpowers(3,10**30)    # long time (3 seconds) -- provably finds the indices of all 3rd powers less than 10^30
            [0, 1, 2]

            sage: Q = BinaryRecurrenceSequence(3,3,2,1)
            sage: Q.pthpowers(11,10**30)          # long time (7.5 seconds)
            [1]

        If the sequence is degenerate, and there are are no ``p`` th powers, returns `[]`.  Otherwise, if
        there are many ``p`` th powers, raises ``ValueError``.

        ::

            sage: T = BinaryRecurrenceSequence(2,0,1,2)
            sage: T.is_degenerate()
            True
            sage: T.is_geometric()
            True
            sage: T.pthpowers(7,10**30)
            Traceback (most recent call last):
            ...
            ValueError: The degenerate binary recurrence sequence is geometric or quasigeometric and has many pth powers.

            sage: L = BinaryRecurrenceSequence(4,0,2,2)
            sage: [L(i).factor() for i in range(10)]
            [2, 2, 2^3, 2^5, 2^7, 2^9, 2^11, 2^13, 2^15, 2^17]
            sage: L.is_quasigeometric()
            True
            sage: L.pthpowers(2,10**30)
            []

        NOTE: This function is primarily optimized in the range where ``Bound`` is much larger than ``p``.

        """

        #Thanks to Jesse Silliman for helpful conversations!

        #Reset the dictionary of good primes, as this depends on p
        self._PGoodness = {}
        #Starting lower bound on good primes
        self._ell = 1

        #If the sequence is geometric, then the `n`th term is `a*r^n`.  Thus the
        #property of being a ``p`` th power is periodic mod ``p``.  So there are either
        #no ``p`` th powers if there are none in the first ``p`` terms, or many if there
        #is at least one in the first ``p`` terms.

        if self.is_geometric() or self.is_quasigeometric():
            no_powers = True
            for i in range(1,6*p+1):
                if _is_p_power(self(i), p) :
                    no_powers = False
                    break
            if no_powers:
                if _is_p_power(self.u0,p):
                    return [0]
                return []
            else :
                raise ValueError("The degenerate binary recurrence sequence is geometric or quasigeometric and has many pth powers.")

        #If the sequence is degenerate without being geometric or quasigeometric, there
        #may be many ``p`` th powers or no ``p`` th powers.

        elif (self.b**2+4*self.c) == 0 :

            #This is the case if the matrix F is not diagonalizable, ie b^2 +4c = 0, and alpha/beta = 1.

            alpha = self.b/2

            #In this case, u_n = u_0*alpha^n + (u_1 - u_0*alpha)*n*alpha^(n-1) = alpha^(n-1)*(u_0 +n*(u_1 - u_0*alpha)),
            #that is, it is a geometric term (alpha^(n-1)) times an arithmetic term (u_0 + n*(u_1-u_0*alpha)).

            #Look at classes n = k mod p, for k = 1,...,p.

            for k in range(1,p+1):

                #The linear equation alpha^(k-1)*u_0 + (k+pm)*(alpha^(k-1)*u1 - u0*alpha^k)
                #must thus be a pth power.  This is a linear equation in m, namely, A + B*m, where

                A = (alpha**(k-1)*self.u0 + k*(alpha**(k-1)*self.u1 - self.u0*alpha**k))
                B = p*(alpha**(k-1)*self.u1 - self.u0*alpha**k)

                #This linear equation represents a pth power iff A is a pth power mod B.

                if _is_p_power_mod(A, p, B):
                    raise ValueError("The degenerate binary recurrence sequence has many pth powers.")
            return []

        #We find ``p`` th powers using an elementary sieve.  Term `u_n` is a ``p`` th
        #power if and only if it is a ``p`` th power modulo every prime `\\ell`.  This condition
        #gives nontrivial information if ``p`` divides the order of the multiplicative group of
        #`\\Bold(F)_{\\ell}`, i.e. if `\\ell` is ` 1 \mod{p}`, as then only `1/p` terms are ``p`` th
        #powers modulo `\\ell``.

        #Thus, given such an `\\ell`, we get a set of necessary congruences for the index modulo the
        #the period of the sequence mod `\\ell`.  Then we intersect these congruences for many primes
        #to get a tight list modulo a growing modulus.  In order to keep this step manageable, we
        #only use primes `\\ell` that are have particularly smooth periods.

        #Some congruences in the list will remain as the modulus grows.  If a congruence remains through
        #7 rounds of increasing the modulus, then we check if this corresponds to a perfect power (if
        #it does, we add it to our list of indices corresponding to ``p`` th powers).  The rest of the congruences
        #are transient and grow with the modulus.  Once the smallest of these is greater than the bound,
        #the list of known indices corresponding to ``p`` th powers is complete.

        else:

            if Bound < 3 * p :

                powers = []
                ell = p + 1

                while not is_prime(ell):
                    ell = ell + p

                F = GF(ell)
                a0 = F(self.u0); a1 = F(self.u1) #a0 and a1 are variables for terms in sequence
                bf, cf = F(self.b), F(self.c)

                for n in range(Bound): # n is the index of the a0

                    #Check whether a0 is a perfect power mod ell
                    if _is_p_power_mod(a0, p, ell) :
                        #if a0 is a perfect power mod ell, check if nth term is ppower
                        if _is_p_power(self(n), p):
                            powers.append(n)

                    a0, a1 = a1, bf*a1 + cf*a0        #step up the variables

            else :

                powers = []        #documents the indices of the sequence that provably correspond to pth powers
                cong = [0]        #list of necessary congruences on the index for it to correspond to pth powers
                Possible_count = {}    #keeps track of the number of rounds a congruence lasts in cong

                #These parameters are involved in how we choose primes to increase the modulus
                qqold = 1        #we believe that we know complete information coming from primes good by qqold
                M1 = 1            #we have congruences modulo M1, this may not be the tightest list
                M2 = p            #we want to move to have congruences mod M2
                qq = 1            #the largest prime power divisor of M1 is qq

                #This loop ups the modulus.
                while True:

                    #Try to get good data mod M2

                    #patience of how long we should search for a "good prime"
                    patience = 0.01 * _estimated_time(lcm(M2,p*next_prime_power(qq)), M1, len(cong), p)
                    tries = 0

                    #This loop uses primes to get a small set of congruences mod M2.
                    while True:

                        #only proceed if took less than patience time to find the next good prime
                        ell = _next_good_prime(p, self, qq, patience, qqold)
                        if ell:

                            #gather congruence data for the sequence mod ell, which will be mod period(ell) = modu
                            cong1, modu = _find_cong1(p, self, ell)

                            CongNew = []        #makes a new list from cong that is now mod M = lcm(M1, modu) instead of M1
                            M = lcm(M1, modu)
                            for k in range(M // M1):
                                for i in cong:
                                    CongNew.append(k * M1 + i)
                            cong = set(CongNew)

                            M1 = M

                            killed_something = False        #keeps track of when cong1 can rule out a congruence in cong

                            #CRT by hand to gain speed
                            for i in list(cong):
                                if not (i % modu in cong1):        #congruence in cong is inconsistent with any in cong1
                                    cong.remove(i)            #remove that congruence
                                    killed_something = True

                            if M1 == M2:
                                if not killed_something:
                                    tries += 1
                                    if tries == 2:            #try twice to rule out congruences
                                        cong = list(cong)
                                        qqold = qq
                                        qq = next_prime_power(qq)
                                        M2 = lcm(M2,p*qq)
                                        break

                        else :
                            qq = next_prime_power(qq)
                            M2 = lcm(M2,p*qq)
                            cong = list(cong)
                            break

                    #Document how long each element of cong has been there
                    for i in cong:
                        if i in Possible_count:
                            Possible_count[i] = Possible_count[i] + 1
                        else :
                            Possible_count[i] = 1

                    #Check how long each element has persisted, if it is for at least 7 cycles,
                    #then we check to see if it is actually a perfect power
                    for i in Possible_count:
                        if Possible_count[i] == 7:
                            n = Integer(i)
                            if n < Bound:
                                if _is_p_power(self(n),p):
                                    powers.append(n)

                    #check for a contradiction
                    if len(cong) > len(powers):
                        if cong[len(powers)] > Bound:
                            break
                    elif M1 > Bound:
                        break

            return powers
Ejemplo n.º 20
0
def local_genus_symbol(self, p):
    """
    Returns the Conway-Sloane genus symbol of 2 times a quadratic form
    defined over ZZ at a prime number p.  This is defined (in the
    Genus_Symbol_p_adic_ring() class in the quadratic_forms/genera
    subfolder) to be a list of tuples (one for each Jordan component
    p^m*A at p, where A is a unimodular symmetric matrix with
    coefficients the p-adic integers) of the following form:

        1. If p>2 then return triples of the form [`m`, `n`, `d`] where

            `m` = valuation of the component

            `n` = rank of A

            `d` = det(A) in {1,u} for normalized quadratic non-residue u.

        2. If p=2 then return quintuples of the form [`m`,`n`,`s`, `d`, `o`] where

            `m` = valuation of the component

            `n` = rank of A

            `d` = det(A) in {1,3,5,7}

            `s` = 0 (or 1) if A is even (or odd)

            `o` = oddity of A (= 0 if s = 0) in Z/8Z
              = the trace of the diagonalization of A

    NOTE: The Conway-Sloane convention for describing the prime 'p =
    -1' is not supported here, and neither is the convention for
    including the 'prime' Infinity.  See note on p370 of Conway-Sloane
    (3rd ed) for a discussion of this convention.

    INPUT:

        -`p` -- a prime number > 0

    OUTPUT:

        Returns a Conway-Sloane genus symbol at p, which is an
        instance of the Genus_Symbol_p_adic_ring class.

    EXAMPLES::

        sage: Q = DiagonalQuadraticForm(ZZ, [1,2,3,4])
        sage: Q.local_genus_symbol(2)
        Genus symbol at 2 : [[1, 2, 3, 1, 4], [2, 1, 1, 1, 1], [3, 1, 1, 1, 1]]
        sage: Q.local_genus_symbol(3)
        Genus symbol at 3 : [[0, 3, 1], [1, 1, -1]]
        sage: Q.local_genus_symbol(5)
        Genus symbol at 5 : [[0, 4, 1]]

    """
    ## Check that p is prime and that the form is defined over ZZ.
    if not is_prime(p):
        raise TypeError("Oops!  The number " + str(p) + " isn't prime.")
    if not self.base_ring() == IntegerRing():
        raise TypeError("Oops!  The quadratic form is not defined over the integers.")

    ## Return the result
    try:
        M = self.Hessian_matrix()
        return LocalGenusSymbol(M, p)
    except Exception:
        raise TypeError("Oops!  There is a problem computing the local genus symbol at the prime " + str(p) + " for this form.")
def local_normal_form(self, p):
    """
    Returns the a locally integrally equivalent quadratic form over
    the p-adic integers Z_p which gives the Jordan decomposition.  The
    Jordan components are written as sums of blocks of size <= 2 and
    are arranged by increasing scale, and then by increasing norm.
    (This is equivalent to saying that we put the 1x1 blocks before
    the 2x2 blocks in each Jordan component.)

    INPUT:

        `p` -- a positive prime number.

    OUTPUT:

        a quadratic form over ZZ

    WARNING:  Currently this only works for quadratic forms defined over ZZ.

    EXAMPLES::

        sage: Q = QuadraticForm(ZZ, 2, [10,4,1])
        sage: Q.local_normal_form(5)
        Quadratic form in 2 variables over Integer Ring with coefficients:
        [ 1 0 ]
        [ * 6 ]

    ::

        sage: Q.local_normal_form(3)
        Quadratic form in 2 variables over Integer Ring with coefficients:
        [ 10 0 ]
        [ * 15 ]

        sage: Q.local_normal_form(2)
        Quadratic form in 2 variables over Integer Ring with coefficients:
        [ 1 0 ]
        [ * 6 ]

    """
    ## Sanity Checks
    if (self.base_ring() != IntegerRing()):
        raise NotImplementedError(
            "Oops!  This currently only works for quadratic forms defined over IntegerRing(). =("
        )
    if not ((p >= 2) and is_prime(p)):
        raise TypeError("Oops!  p is not a positive prime number. =(")

    ## Some useful local variables
    Q = copy.deepcopy(self)
    Q.__init__(self.base_ring(), self.dim(), self.coefficients())

    ## Prepare the final form to return
    Q_Jordan = copy.deepcopy(self)
    Q_Jordan.__init__(self.base_ring(), 0)

    while Q.dim() > 0:
        n = Q.dim()

        ## Step 1: Find the minimally p-divisible matrix entry, preferring diagonals
        ## -------------------------------------------------------------------------
        (min_i, min_j) = Q.find_entry_with_minimal_scale_at_prime(p)
        if min_i == min_j:
            min_val = valuation(2 * Q[min_i, min_j], p)
        else:
            min_val = valuation(Q[min_i, min_j], p)

        ## Error if we still haven't seen non-zero coefficients!
        if (min_val == Infinity):
            raise RuntimeError("Oops!  The original matrix is degenerate. =(")

        ## Step 2: Arrange for the upper leftmost entry to have minimal valuation
        ## ----------------------------------------------------------------------
        if (min_i == min_j):
            block_size = 1
            Q.swap_variables(0, min_i, in_place=True)
        else:
            ## Work in the upper-left 2x2 block, and replace it by its 2-adic equivalent form
            Q.swap_variables(0, min_i, in_place=True)
            Q.swap_variables(1, min_j, in_place=True)

            ## 1x1 => make upper left the smallest
            if (p != 2):
                block_size = 1
                Q.add_symmetric(1, 0, 1, in_place=True)
            ## 2x2 => replace it with the appropriate 2x2 matrix
            else:
                block_size = 2

        ## DIAGNOSTIC
        #print "\n Finished Step 2 \n";
        #print "\n Q is: \n" + str(Q)  + "\n";
        #print "  p is: " + str(p)
        #print "  min_val is: " + str( min_val)
        #print "  block_size is: " + str(block_size)
        #print "\n Starting Step 3 \n"

        ## Step 3: Clear out the remaining entries
        ##  ---------------------------------------
        min_scale = p**min_val  ## This is the minimal valuation of the Hessian matrix entries.

        ##DIAGNOSTIC
        #print "Starting Step 3:"
        #print "----------------"
        #print "  min_scale is: " + str(min_scale)

        ## Perform cancellation over Z by ensuring divisibility
        if (block_size == 1):
            a = 2 * Q[0, 0]
            for j in range(block_size, n):
                b = Q[0, j]
                g = GCD(a, b)

                ## DIAGNSOTIC
                #print "Cancelling from a 1x1 block:"
                #print "----------------------------"
                #print "  Cancelling entry with index (" + str(upper_left) + ", " + str(j) + ")"
                #print "  entry = " + str(b)
                #print "  gcd = " + str(g)
                #print "  a = " + str(a)
                #print "  b = " + str(b)
                #print "  a/g = " + str(a/g) + "   (used for stretching)"
                #print "  -b/g = " + str(-b/g) + "   (used for cancelling)"

                ## Sanity Check:  a/g is a p-unit
                if valuation(g, p) != valuation(a, p):
                    raise RuntimeError(
                        "Oops!  We have a problem with our rescaling not preserving p-integrality!"
                    )

                Q.multiply_variable(
                    ZZ(a / g), j, in_place=True
                )  ## Ensures that the new b entry is divisible by a
                Q.add_symmetric(ZZ(-b / g), j, 0,
                                in_place=True)  ## Performs the cancellation

        elif (block_size == 2):
            a1 = 2 * Q[0, 0]
            a2 = Q[0, 1]
            b1 = Q[1, 0]  ## This is the same as a2
            b2 = 2 * Q[1, 1]

            big_det = (a1 * b2 - a2 * b1)
            small_det = big_det / (min_scale * min_scale)

            ## Cancels out the rows/columns of the 2x2 block
            for j in range(block_size, n):
                a = Q[0, j]
                b = Q[1, j]

                ## Ensures an integral result (scale jth row/column by big_det)
                Q.multiply_variable(big_det, j, in_place=True)

                ## Performs the cancellation (by producing -big_det * jth row/column)
                Q.add_symmetric(ZZ(-(a * b2 - b * a2)), j, 0, in_place=True)
                Q.add_symmetric(ZZ(-(-a * b1 + b * a1)), j, 1, in_place=True)

                ## Now remove the extra factor (non p-unit factor) in big_det we introduced above
                Q.divide_variable(ZZ(min_scale * min_scale), j, in_place=True)

            ## DIAGNOSTIC
            #print "Cancelling out a 2x2 block:"
            #print "---------------------------"
            #print "  a1 = " + str(a1)
            #print "  a2 = " + str(a2)
            #print "  b1 = " + str(b1)
            #print "  b2 = " + str(b2)
            #print "  big_det = " + str(big_det)
            #print "  min_scale = " + str(min_scale)
            #print "  small_det = " + str(small_det)
            #print "  Q = \n", Q

            ## Uses Cassels's proof to replace the remaining 2 x 2 block
            if (((1 + small_det) % 8) == 0):
                Q[0, 0] = 0
                Q[1, 1] = 0
                Q[0, 1] = min_scale
            elif (((5 + small_det) % 8) == 0):
                Q[0, 0] = min_scale
                Q[1, 1] = min_scale
                Q[0, 1] = min_scale
            else:
                raise RuntimeError(
                    "Error in LocalNormal: Impossible behavior for a 2x2 block! \n"
                )

        ## Check that the cancellation worked, extract the upper-left block, and trim Q to handle the next block.
        for i in range(block_size):
            for j in range(block_size, n):
                if Q[i, j] != 0:
                    raise RuntimeError(
                        "Oops!  The cancellation didn't work properly at entry ("
                        + str(i) + ", " + str(j) + ").")
        Q_Jordan = Q_Jordan + Q.extract_variables(range(block_size))
        Q = Q.extract_variables(range(block_size, n))

    return Q_Jordan
Ejemplo n.º 22
0
def benchmark(pbound = [3, 2**10], nbound = [3, 2**8], cbound = [1, Infinity], obound = [1, Infinity], loops = 10, tloop = Infinity, tmax = Infinity, prime = False, even = False, check = False, fname = None, write = False, overwrite = False, verbose = True, skip_pari = False, skip_magma = False, skip_rains = False, skip_kummer = False):
    if write:
        mode = 'w' if overwrite else 'a'
        f = open(fname, mode, 0)
    else:
        f = sys.stdout
    pmin, pmax = pbound
    nmin, nmax = nbound
    omin, omax = obound
    cmin, cmax = cbound
    M = Magma()
    for p in xrange(pmin, pmax):
        p = ZZ(p)
        if not p.is_prime():
            continue
        for n in xrange(nmin, nmax):
            n = ZZ(n)
            if (prime == 1 and not is_prime(n)) or (prime == 2 and not is_prime_power(n)):
                continue
            if n < 2:
                continue
            if n % p == 0:
                continue
            if (not even) and (n % 2 == 0):
                continue
            o, G = find_root_order(p, [n, n], n, verbose=False)
            m = G[0][0].parent().order()
            c = Mod(p,n).multiplicative_order()
            if verbose:
                sys.stdout.write("\r"+" "*79)
                print("\rp = {}, n = {}, (o = {}, c = {})".format(p, n, o, c))
            if verbose:
                t = mytime()
                sys.stdout.write("Constructing fields ({})".format(time.strftime("%c")))
                sys.stdout.flush()
            q = p**n
            k = GF(q, name='z')
            k_rand = GF(q, modulus='random', name='z')
            k_flint = GF_flint(p, k.modulus(), name='z')
            if verbose > 1:
                sys.stdout.write("\ntotal: {}s\n".format(mytime(t)))
                sys.stdout.flush()
            # Magma
            if verbose:
                sys.stdout.write("\r"+" "*79)
                sys.stdout.write("\rMagma ({})".format(time.strftime("%c")))
                sys.stdout.flush()
            tloops = 0
            for l in xrange(loops):
                if skip_magma:
                    break
                if (o > omax) or (o == p):
                    break
                # let's assume that launching a new Magma instance is cheaper
                # than computing random irreducible polynomials
                try:
                    M._start()
                except OSError as err:
                    # but it can also cause fork issues...
                    # let's accept this
                    # and fail as the situation will only worsen
                    # unless it is "just" a memory issue
                    # which should be mitigated by COW but is not
                    #print(err)
                    if err.errno == errno.ENOMEM:
                        break
                    else:
                        raise
                try:
                    k_magma = M(k)
                    k_rand_magma = M(k_rand)
                    if tloop is not Infinity:
                        alarm(tloop)
                    t = mytime()
                    k_magma.Embed(k_rand_magma, nvals=0)
                    #M._eval_line("Embed(k_magma, k_rand_magma);", wait_for_prompt=False)
                    tloops += mytime(t)
                except TypeError:
                    # sage/magma interface sometimes gets confused
                    pass
                except (KeyboardInterrupt, AlarmInterrupt):
                    # sage interface eats KeyboardInterrupt
                    # and AlarmInterrupt derives from it
                    tloops = 0
                    break
                finally:
                    if tloop is not Infinity:
                        cancel_alarm()
                    M.quit()
                    # sage pexpect interface leaves zombies around
                    try:
                        while os.waitpid(-1, os.WNOHANG)[0]:
                            pass
                    # but sometimes every child is already buried
                    # and we get an ECHILD error...
                    except OSError:
                        pass
                if tloops > tmax:
                    break
            tmagma = tloops / (l+1)
            if verbose > 1:
                sys.stdout.write("\ntotal: {}s, per loop: {}s\n".format(tloops, tloops/(l+1)))
                sys.stdout.flush()
            # Rains algorithms
            if verbose:
                sys.stdout.write("\r"+" "*79)
                sys.stdout.write("\rCyclotomic Rains ({})".format(time.strftime("%c")))
                sys.stdout.flush()
            trains = []
            tloops = 0
            for l in xrange(loops):
                if skip_rains:
                    break
                if (o > omax) or (o == p):
                    break
                try:
                    if tloop is not Infinity:
                        alarm(tloop)
                    t = mytime()
                    a, b = find_gens_cyclorains(k_flint, k_flint, use_lucas = False)
                    tloops += mytime(t)
                except (KeyboardInterrupt, AlarmInterrupt):
                    tloops = 0
                    break
                finally:
                    if tloop is not Infinity:
                        cancel_alarm()
                if check and (l == 0 or check > 1):
                    g = a.minpoly()
                    if g.degree() != n:
                        raise RuntimeError("wrong degree")
                    if g != b.minpoly():
                        raise RuntimeError("different minpolys")
                if tloops > tmax:
                    break
            trains.append(tloops / (l+1))
            if verbose > 1:
                sys.stdout.write("\ntotal: {}s, per loop: {}s\n".format(tloops, tloops/(l+1)))
                sys.stdout.flush()
            # Conic Rains
            if verbose:
                sys.stdout.write("\r"+" "*79)
                sys.stdout.write("\rConic Rains ({})".format(time.strftime("%c")))
                sys.stdout.flush()
            tloops = 0
            for l in xrange(loops):
                if skip_rains:
                    break
                if (o != 2) or (o > omax) or (o == p):
                    break
                try:
                    if tloop is not Infinity:
                        alarm(tloop)
                    t = mytime()
                    a, b = find_gens_cyclorains(k_flint, k_flint, use_lucas = True)
                    tloops += mytime(t)
                except (KeyboardInterrupt, AlarmInterrupt):
                    tloops = 0
                    break
                finally:
                    if tloop is not Infinity:
                        cancel_alarm()
                if check and (l == 0 or check > 1):
                    g = a.minpoly()
                    if g.degree() != n:
                        raise RuntimeError("wrong degree")
                    if g != b.minpoly():
                        raise RuntimeError("different minpolys")
                if tloops > tmax:
                    break
            trains.append(tloops / (l+1))
            if verbose > 1:
                sys.stdout.write("\ntotal: {}s, per loop: {}s\n".format(tloops, tloops/(l+1)))
                sys.stdout.flush()
            # Elliptic Rains
            if verbose:
                sys.stdout.write("\r"+" "*79)
                sys.stdout.write("\rElliptic Rains ({})".format(time.strftime("%c")))
                sys.stdout.flush()
            tloops = 0
            for l in xrange(loops):
                if skip_rains:
                    break
                try:
                    if tloop is not Infinity:
                        alarm(tloop)
                    t = mytime()
                    a, b = find_gens_ellrains(k_flint, k_flint)
                    tloops += mytime(t)
                except RuntimeError:
                    # sometimes no suitable elliptic curve exists
                    pass
                except (KeyboardInterrupt, AlarmInterrupt):
                    tloops = 0
                    break
                finally:
                    if tloop is not Infinity:
                        cancel_alarm()
                if check and (l == 0 or check > 1):
                    g = a.minpoly()
                    if g.degree() != n:
                        raise RuntimeError("wrong degree")
                    if g != b.minpoly():
                        raise RuntimeError("different minpolys")
                if tloops > tmax:
                    break
            trains.append(tloops / (l+1))
            if verbose > 1:
                sys.stdout.write("\ntotal: {}s, per loop: {}s\n".format(tloops, tloops/(l+1)))
                sys.stdout.flush()
            # PARI/GP
            if verbose:
                sys.stdout.write("\r"+" "*79)
                sys.stdout.write("\rPARI/GP ({})".format(time.strftime("%c")))
                sys.stdout.flush()
            tloops = 0
            for l in xrange(loops):
                if skip_pari:
                    break
                if c < cmin or c > cmax:
                    break
                try:
                    if tloop is not Infinity:
                        alarm(tloop)
                    t = mytime()
                    a, b = find_gens_pari(k, k)
                    tloops += mytime(t)
                except (KeyboardInterrupt, AlarmInterrupt):
                    tloops = 0
                    break
                finally:
                    if tloop is not Infinity:
                        cancel_alarm()
                if check and (l == 0 or check > 1):
                    g = a.minpoly()
                    if g.degree() != n:
                        raise RuntimeError("wrong degree")
                    if g != b.minpoly():
                        raise RuntimeError("different minpolys")
                if tloops > tmax:
                    break
            tpari = tloops / (l+1)
            # Kummer algorithms
            tkummer = []
            # only linalg and modcomp implemented for c==1
            for i, algo in enumerate(kummer_algolist[2*(c==1):-2*(c==1)-1]):
                if verbose:
                    sys.stdout.write("\r"+" "*79)
                    sys.stdout.write("\rKummer {} ({})".format(kummer_namelist[2*(c==1)+i], time.strftime("%c")))
                    sys.stdout.flush()
                tloops = 0
                for l in xrange(loops):
                    if skip_kummer:
                        break
                    if c < cmin or c > cmax:
                        break
                    try:
                        if tloop is not Infinity:
                            alarm(tloop)
                        t = mytime()
                        a, b = find_gens_kummer(k_flint, k_flint, n, algo)
                        tloops += mytime(t)
                    except (KeyboardInterrupt, AlarmInterrupt):
                        tloops = 0
                        break
                    finally:
                        if tloop is not Infinity:
                            cancel_alarm()
                    if check and (l == 0 or check > 1):
                        g = a.minpoly()
                        if g.degree() != n:
                            raise RuntimeError("wrong degree")
                        if g != b.minpoly():
                            raise RuntimeError("different minpolys")
                    if tloops > tmax:
                        break
                tkummer.append(tloops / (l+1))
                if verbose > 1:
                    sys.stdout.write("\ntotal: {}s, per loop: {}s\n".format(tloops, tloops/(l+1)))
                    sys.stdout.flush()
            tkummer = 2*(c == 1)*[0] + tkummer + 2*(c == 1)*[0]
            if verbose:
                sys.stdout.write("\r")
                sys.stdout.flush()
            f.write(("{} {} ({}, {})" + " {}" + " {}"*len(trains) + " {}" + " {}"*len(tkummer)+"\n").format(p, n, o, c, *([tmagma] + trains + [tpari] + tkummer)))
    if write:
        f.close()
Ejemplo n.º 23
0
def local_genus_symbol(self, p):
    """
    Returns the Conway-Sloane genus symbol of 2 times a quadratic form
    defined over ZZ at a prime number p.  This is defined (in the
    Genus_Symbol_p_adic_ring() class in the quadratic_forms/genera
    subfolder) to be a list of tuples (one for each Jordan component
    p^m*A at p, where A is a unimodular symmetric matrix with
    coefficients the p-adic integers) of the following form:

        1. If p>2 then return triples of the form [`m`, `n`, `d`] where

            `m` = valuation of the component

            `n` = rank of A

            `d` = det(A) in {1,u} for normalized quadratic non-residue u.

        2. If p=2 then return quintuples of the form [`m`,`n`,`s`, `d`, `o`] where

            `m` = valuation of the component

            `n` = rank of A

            `d` = det(A) in {1,3,5,7}

            `s` = 0 (or 1) if A is even (or odd)

            `o` = oddity of A (= 0 if s = 0) in Z/8Z
              = the trace of the diagonalization of A

    NOTE: The Conway-Sloane convention for describing the prime 'p =
    -1' is not supported here, and neither is the convention for
    including the 'prime' Infinity.  See note on p370 of Conway-Sloane
    (3rd ed) for a discussion of this convention.

    INPUT:

        -`p` -- a prime number > 0

    OUTPUT:

        Returns a Conway-Sloane genus symbol at p, which is an
        instance of the Genus_Symbol_p_adic_ring class.

    EXAMPLES::

        sage: Q = DiagonalQuadraticForm(ZZ, [1,2,3,4])
        sage: Q.local_genus_symbol(2)
        Genus symbol at 2:    [2^-2 4^1 8^1]_6
        sage: Q.local_genus_symbol(3)
        Genus symbol at 3:     1^3 3^-1
        sage: Q.local_genus_symbol(5)
        Genus symbol at 5:     1^4

    """
    ## Check that p is prime and that the form is defined over ZZ.
    if not is_prime(p):
        raise TypeError("Oops!  The number " + str(p) + " isn't prime.")
    if not self.base_ring() == IntegerRing():
        raise TypeError("Oops!  The quadratic form is not defined over the integers.")

    ## Return the result
    try:
        M = self.Hessian_matrix()
        return LocalGenusSymbol(M, p)
    except Exception:
        raise TypeError("Oops!  There is a problem computing the local genus symbol at the prime " + str(p) + " for this form.")
Ejemplo n.º 24
0
    def pthpowers(self, p, Bound):
        """
        Find the indices of proveably all pth powers in the recurrence sequence bounded by Bound.

        Let `u_n` be a binary recurrence sequence.  A ``p`` th power in `u_n` is a solution
        to `u_n = y^p` for some integer `y`.  There are only finitely many ``p`` th powers in
        any recurrence sequence [SS].

        INPUT:

        - ``p`` - a rational prime integer (the fixed p in `u_n = y^p`)

        - ``Bound`` - a natural number (the maximum index `n` in `u_n = y^p` that is checked).

        OUTPUT:

        - A list of the indices of all ``p`` th powers less bounded by ``Bound``.  If the sequence is degenerate and there are many ``p`` th powers, raises ``ValueError``.

        EXAMPLES::

            sage: R = BinaryRecurrenceSequence(1,1)        #the Fibonacci sequence
            sage: R.pthpowers(2, 10**30)        # long time (7 seconds) -- in fact these are all squares, c.f. [BMS06]
            [0, 1, 2, 12]

            sage: S = BinaryRecurrenceSequence(8,1) #a Lucas sequence
            sage: S.pthpowers(3,10**30)    # long time (3 seconds) -- provably finds the indices of all 3rd powers less than 10^30
            [0, 1, 2]

            sage: Q = BinaryRecurrenceSequence(3,3,2,1)
            sage: Q.pthpowers(11,10**30)          # long time (7.5 seconds)
            [1]

        If the sequence is degenerate, and there are are no ``p`` th powers, returns `[]`.  Otherwise, if
        there are many ``p`` th powers, raises ``ValueError``.

        ::

            sage: T = BinaryRecurrenceSequence(2,0,1,2)
            sage: T.is_degenerate()
            True
            sage: T.is_geometric()
            True
            sage: T.pthpowers(7,10**30)
            Traceback (most recent call last):
            ...
            ValueError: The degenerate binary recurrence sequence is geometric or quasigeometric and has many pth powers.

            sage: L = BinaryRecurrenceSequence(4,0,2,2)
            sage: [L(i).factor() for i in range(10)]
            [2, 2, 2^3, 2^5, 2^7, 2^9, 2^11, 2^13, 2^15, 2^17]
            sage: L.is_quasigeometric()
            True
            sage: L.pthpowers(2,10**30)
            []

        NOTE: This function is primarily optimized in the range where ``Bound`` is much larger than ``p``.

        """

        #Thanks to Jesse Silliman for helpful conversations!

        #Reset the dictionary of good primes, as this depends on p
        self._PGoodness = {}
        #Starting lower bound on good primes
        self._ell = 1

        #If the sequence is geometric, then the `n`th term is `a*r^n`.  Thus the
        #property of being a ``p`` th power is periodic mod ``p``.  So there are either
        #no ``p`` th powers if there are none in the first ``p`` terms, or many if there
        #is at least one in the first ``p`` terms.

        if self.is_geometric() or self.is_quasigeometric():
            no_powers = True
            for i in range(1, 6 * p + 1):
                if _is_p_power(self(i), p):
                    no_powers = False
                    break
            if no_powers:
                if _is_p_power(self.u0, p):
                    return [0]
                return []
            else:
                raise ValueError(
                    "The degenerate binary recurrence sequence is geometric or quasigeometric and has many pth powers."
                )

        #If the sequence is degenerate without being geometric or quasigeometric, there
        #may be many ``p`` th powers or no ``p`` th powers.

        elif (self.b**2 + 4 * self.c) == 0:

            #This is the case if the matrix F is not diagonalizable, ie b^2 +4c = 0, and alpha/beta = 1.

            alpha = self.b / 2

            #In this case, u_n = u_0*alpha^n + (u_1 - u_0*alpha)*n*alpha^(n-1) = alpha^(n-1)*(u_0 +n*(u_1 - u_0*alpha)),
            #that is, it is a geometric term (alpha^(n-1)) times an arithmetic term (u_0 + n*(u_1-u_0*alpha)).

            #Look at classes n = k mod p, for k = 1,...,p.

            for k in range(1, p + 1):

                #The linear equation alpha^(k-1)*u_0 + (k+pm)*(alpha^(k-1)*u1 - u0*alpha^k)
                #must thus be a pth power.  This is a linear equation in m, namely, A + B*m, where

                A = (alpha**(k - 1) * self.u0 + k *
                     (alpha**(k - 1) * self.u1 - self.u0 * alpha**k))
                B = p * (alpha**(k - 1) * self.u1 - self.u0 * alpha**k)

                #This linear equation represents a pth power iff A is a pth power mod B.

                if _is_p_power_mod(A, p, B):
                    raise ValueError(
                        "The degenerate binary recurrence sequence has many pth powers."
                    )
            return []

        #We find ``p`` th powers using an elementary sieve.  Term `u_n` is a ``p`` th
        #power if and only if it is a ``p`` th power modulo every prime `\\ell`.  This condition
        #gives nontrivial information if ``p`` divides the order of the multiplicative group of
        #`\\Bold(F)_{\\ell}`, i.e. if `\\ell` is ` 1 \mod{p}`, as then only `1/p` terms are ``p`` th
        #powers modulo `\\ell``.

        #Thus, given such an `\\ell`, we get a set of necessary congruences for the index modulo the
        #the period of the sequence mod `\\ell`.  Then we intersect these congruences for many primes
        #to get a tight list modulo a growing modulus.  In order to keep this step manageable, we
        #only use primes `\\ell` that are have particularly smooth periods.

        #Some congruences in the list will remain as the modulus grows.  If a congruence remains through
        #7 rounds of increasing the modulus, then we check if this corresponds to a perfect power (if
        #it does, we add it to our list of indices corresponding to ``p`` th powers).  The rest of the congruences
        #are transient and grow with the modulus.  Once the smallest of these is greater than the bound,
        #the list of known indices corresponding to ``p`` th powers is complete.

        else:

            if Bound < 3 * p:

                powers = []
                ell = p + 1

                while not is_prime(ell):
                    ell = ell + p

                F = GF(ell)
                a0 = F(self.u0)
                a1 = F(self.u1)  #a0 and a1 are variables for terms in sequence
                bf, cf = F(self.b), F(self.c)

                for n in range(Bound):  # n is the index of the a0

                    #Check whether a0 is a perfect power mod ell
                    if _is_p_power_mod(a0, p, ell):
                        #if a0 is a perfect power mod ell, check if nth term is ppower
                        if _is_p_power(self(n), p):
                            powers.append(n)

                    a0, a1 = a1, bf * a1 + cf * a0  #step up the variables

            else:

                powers = [
                ]  #documents the indices of the sequence that provably correspond to pth powers
                cong = [
                    0
                ]  #list of necessary congruences on the index for it to correspond to pth powers
                Possible_count = {
                }  #keeps track of the number of rounds a congruence lasts in cong

                #These parameters are involved in how we choose primes to increase the modulus
                qqold = 1  #we believe that we know complete information coming from primes good by qqold
                M1 = 1  #we have congruences modulo M1, this may not be the tightest list
                M2 = p  #we want to move to have congruences mod M2
                qq = 1  #the largest prime power divisor of M1 is qq

                #This loop ups the modulus.
                while True:

                    #Try to get good data mod M2

                    #patience of how long we should search for a "good prime"
                    patience = 0.01 * _estimated_time(
                        lcm(M2, p * next_prime_power(qq)), M1, len(cong), p)
                    tries = 0

                    #This loop uses primes to get a small set of congruences mod M2.
                    while True:

                        #only proceed if took less than patience time to find the next good prime
                        ell = _next_good_prime(p, self, qq, patience, qqold)
                        if ell:

                            #gather congruence data for the sequence mod ell, which will be mod period(ell) = modu
                            cong1, modu = _find_cong1(p, self, ell)

                            CongNew = [
                            ]  #makes a new list from cong that is now mod M = lcm(M1, modu) instead of M1
                            M = lcm(M1, modu)
                            for k in range(M // M1):
                                for i in cong:
                                    CongNew.append(k * M1 + i)
                            cong = set(CongNew)

                            M1 = M

                            killed_something = False  #keeps track of when cong1 can rule out a congruence in cong

                            #CRT by hand to gain speed
                            for i in list(cong):
                                if not (
                                        i % modu in cong1
                                ):  #congruence in cong is inconsistent with any in cong1
                                    cong.remove(i)  #remove that congruence
                                    killed_something = True

                            if M1 == M2:
                                if not killed_something:
                                    tries += 1
                                    if tries == 2:  #try twice to rule out congruences
                                        cong = list(cong)
                                        qqold = qq
                                        qq = next_prime_power(qq)
                                        M2 = lcm(M2, p * qq)
                                        break

                        else:
                            qq = next_prime_power(qq)
                            M2 = lcm(M2, p * qq)
                            cong = list(cong)
                            break

                    #Document how long each element of cong has been there
                    for i in cong:
                        if i in Possible_count:
                            Possible_count[i] = Possible_count[i] + 1
                        else:
                            Possible_count[i] = 1

                    #Check how long each element has persisted, if it is for at least 7 cycles,
                    #then we check to see if it is actually a perfect power
                    for i in Possible_count:
                        if Possible_count[i] == 7:
                            n = Integer(i)
                            if n < Bound:
                                if _is_p_power(self(n), p):
                                    powers.append(n)

                    #check for a contradiction
                    if len(cong) > len(powers):
                        if cong[len(powers)] > Bound:
                            break
                    elif M1 > Bound:
                        break

            return powers
def local_normal_form(self, p):
    """
    Returns the a locally integrally equivalent quadratic form over
    the p-adic integers Z_p which gives the Jordan decomposition.  The
    Jordan components are written as sums of blocks of size <= 2 and
    are arranged by increasing scale, and then by increasing norm.
    (This is equivalent to saying that we put the 1x1 blocks before
    the 2x2 blocks in each Jordan component.)

    INPUT:

        `p` -- a positive prime number.

    OUTPUT:

        a quadratic form over ZZ

    WARNING:  Currently this only works for quadratic forms defined over ZZ.

    EXAMPLES::

        sage: Q = QuadraticForm(ZZ, 2, [10,4,1])
        sage: Q.local_normal_form(5)
        Quadratic form in 2 variables over Integer Ring with coefficients:
        [ 1 0 ]
        [ * 6 ]

    ::

        sage: Q.local_normal_form(3)
        Quadratic form in 2 variables over Integer Ring with coefficients:
        [ 10 0 ]
        [ * 15 ]

        sage: Q.local_normal_form(2)
        Quadratic form in 2 variables over Integer Ring with coefficients:
        [ 1 0 ]
        [ * 6 ]

    """
    ## Sanity Checks
    if (self.base_ring() != IntegerRing()):
        raise NotImplementedError("Oops!  This currently only works for quadratic forms defined over IntegerRing(). =(")
    if not ((p>=2) and is_prime(p)):
        raise TypeError("Oops!  p is not a positive prime number. =(")

    ## Some useful local variables
    Q = copy.deepcopy(self)
    Q.__init__(self.base_ring(), self.dim(), self.coefficients())

    ## Prepare the final form to return
    Q_Jordan = copy.deepcopy(self)
    Q_Jordan.__init__(self.base_ring(), 0)


    while Q.dim() > 0:
        n = Q.dim()

        ## Step 1: Find the minimally p-divisible matrix entry, preferring diagonals
        ## -------------------------------------------------------------------------
        (min_i, min_j) = Q.find_entry_with_minimal_scale_at_prime(p)
        if min_i == min_j:
            min_val = valuation(2 * Q[min_i, min_j], p)
        else:
            min_val = valuation(Q[min_i, min_j], p)

        ## Error if we still haven't seen non-zero coefficients!
        if (min_val == Infinity):
            raise RuntimeError("Oops!  The original matrix is degenerate. =(")


        ## Step 2: Arrange for the upper leftmost entry to have minimal valuation
        ## ----------------------------------------------------------------------
        if (min_i == min_j):
            block_size = 1
            Q.swap_variables(0, min_i, in_place = True)
        else:
            ## Work in the upper-left 2x2 block, and replace it by its 2-adic equivalent form
            Q.swap_variables(0, min_i, in_place = True)
            Q.swap_variables(1, min_j, in_place = True)

            ## 1x1 => make upper left the smallest
            if (p != 2):
                block_size = 1;
                Q.add_symmetric(1, 0, 1, in_place = True)
            ## 2x2 => replace it with the appropriate 2x2 matrix
            else:
                block_size = 2

        ## DIAGNOSTIC
        #print "\n Finished Step 2 \n";
        #print "\n Q is: \n" + str(Q)  + "\n";
        #print "  p is: " + str(p)
        #print "  min_val is: " + str( min_val)
        #print "  block_size is: " + str(block_size)
        #print "\n Starting Step 3 \n"

        ## Step 3: Clear out the remaining entries
        ##  ---------------------------------------
        min_scale = p ** min_val                             ## This is the minimal valuation of the Hessian matrix entries.

        ##DIAGNOSTIC
        #print "Starting Step 3:"
        #print "----------------"
        #print "  min_scale is: " + str(min_scale)


        ## Perform cancellation over Z by ensuring divisibility
        if (block_size == 1):
            a = 2 * Q[0,0]
            for j in range(block_size, n):
                b = Q[0, j]
                g = GCD(a, b)

                ## DIAGNSOTIC
                #print "Cancelling from a 1x1 block:"
                #print "----------------------------"
                #print "  Cancelling entry with index (" + str(upper_left) + ", " + str(j) + ")"
                #print "  entry = " + str(b)
                #print "  gcd = " + str(g)
                #print "  a = " + str(a)
                #print "  b = " + str(b)
                #print "  a/g = " + str(a/g) + "   (used for stretching)"
                #print "  -b/g = " + str(-b/g) + "   (used for cancelling)"

                ## Sanity Check:  a/g is a p-unit
                if valuation (g, p) != valuation(a, p):
                    raise RuntimeError("Oops!  We have a problem with our rescaling not preserving p-integrality!")

                Q.multiply_variable(ZZ(a/g), j, in_place = True)   ## Ensures that the new b entry is divisible by a
                Q.add_symmetric(ZZ(-b/g), j, 0, in_place = True)  ## Performs the cancellation


        elif (block_size == 2):
            a1 = 2 * Q[0,0]
            a2 = Q[0, 1]
            b1 = Q[1, 0]      ## This is the same as a2
            b2 = 2 * Q[1, 1]

            big_det = (a1*b2 - a2*b1)
            small_det = big_det / (min_scale * min_scale)

            ## Cancels out the rows/columns of the 2x2 block
            for j in range(block_size, n):
                a = Q[0, j]
                b = Q[1, j]

                ## Ensures an integral result (scale jth row/column by big_det)
                Q.multiply_variable(big_det, j, in_place = True)

                ## Performs the cancellation (by producing -big_det * jth row/column)
                Q.add_symmetric(ZZ(-(a*b2 - b*a2)), j, 0, in_place = True)
                Q.add_symmetric(ZZ(-(-a*b1 + b*a1)), j, 1, in_place = True)

                ## Now remove the extra factor (non p-unit factor) in big_det we introduced above
                Q.divide_variable(ZZ(min_scale * min_scale), j, in_place = True)

            ## DIAGNOSTIC
            #print "Cancelling out a 2x2 block:"
            #print "---------------------------"
            #print "  a1 = " + str(a1)
            #print "  a2 = " + str(a2)
            #print "  b1 = " + str(b1)
            #print "  b2 = " + str(b2)
            #print "  big_det = " + str(big_det)
            #print "  min_scale = " + str(min_scale)
            #print "  small_det = " + str(small_det)
            #print "  Q = \n", Q

            ## Uses Cassels's proof to replace the remaining 2 x 2 block
            if (((1 + small_det) % 8) == 0):
                Q[0, 0] = 0
                Q[1, 1] = 0
                Q[0, 1] = min_scale
            elif (((5 + small_det) % 8) == 0):
                Q[0, 0] = min_scale
                Q[1, 1] = min_scale
                Q[0, 1] = min_scale
            else:
                raise RuntimeError("Error in LocalNormal: Impossible behavior for a 2x2 block! \n")


        ## Check that the cancellation worked, extract the upper-left block, and trim Q to handle the next block.
        for i in range(block_size):
            for j in range(block_size, n):
                if Q[i,j] != 0:
                    raise RuntimeError("Oops!  The cancellation didn't work properly at entry (" + str(i) + ", " + str(j) + ").")
        Q_Jordan = Q_Jordan + Q.extract_variables(range(block_size))
        Q = Q.extract_variables(range(block_size, n))

    return Q_Jordan
def has_equivalent_Jordan_decomposition_at_prime(self, other, p):
    """
    Determines if the given quadratic form has a Jordan decomposition
    equivalent to that of self.

    INPUT:

    a QuadraticForm

    OUTPUT:

    boolean

    EXAMPLES::

        sage: Q1 = QuadraticForm(ZZ, 3, [1, 0, -1, 1, 0, 3])
        sage: Q2 = QuadraticForm(ZZ, 3, [1, 0, 0, 2, -2, 6])
        sage: Q3 = QuadraticForm(ZZ, 3, [1, 0, 0, 1, 0, 11])
        sage: [Q1.level(), Q2.level(), Q3.level()]
        [44, 44, 44]
        sage: Q1.has_equivalent_Jordan_decomposition_at_prime(Q2,2)
        False
        sage: Q1.has_equivalent_Jordan_decomposition_at_prime(Q2,11)
        False
        sage: Q1.has_equivalent_Jordan_decomposition_at_prime(Q3,2)
        False
        sage: Q1.has_equivalent_Jordan_decomposition_at_prime(Q3,11)
        True
        sage: Q2.has_equivalent_Jordan_decomposition_at_prime(Q3,2)
        True
        sage: Q2.has_equivalent_Jordan_decomposition_at_prime(Q3,11)
        False

    """
    ## Sanity Checks
    #if not isinstance(other, QuadraticForm):
    if not isinstance(other, type(self)):
        raise TypeError("Oops!  The first argument must be of type QuadraticForm.")
    if not is_prime(p):
        raise TypeError("Oops!  The second argument must be a prime number.")

    ## Get the relevant local normal forms quickly
    self_jordan = self.jordan_blocks_by_scale_and_unimodular(p, safe_flag= False)
    other_jordan = other.jordan_blocks_by_scale_and_unimodular(p, safe_flag=False)

    ## Check for the same number of Jordan components
    if len(self_jordan) != len(other_jordan):
        return False


    ## Deal with odd primes:  Check that the Jordan component scales, dimensions, and discriminants are the same
    if p != 2:
        for i in range(len(self_jordan)):
            if (self_jordan[i][0] != other_jordan[i][0]) \
               or (self_jordan[i][1].dim() != other_jordan[i][1].dim()) \
               or (legendre_symbol(self_jordan[i][1].det() * other_jordan[i][1].det(), p) != 1):
                return False

        ## All tests passed for an odd prime.
        return True


    ## For p = 2:  Check that all Jordan Invariants are the same.
    elif p == 2:

        ## Useful definition
        t = len(self_jordan)          ## Define t = Number of Jordan components


        ## Check that all Jordan Invariants are the same (scale, dim, and norm)
        for i in range(t):
            if (self_jordan[i][0] != other_jordan[i][0]) \
               or (self_jordan[i][1].dim() != other_jordan[i][1].dim()) \
               or (valuation(GCD(self_jordan[i][1].coefficients()), p) != valuation(GCD(other_jordan[i][1].coefficients()), p)):
                return False

        ## Use O'Meara's isometry test 93:29 on p277.
        ## ------------------------------------------

        ## List of norms, scales, and dimensions for each i
        scale_list = [ZZ(2)**self_jordan[i][0]  for i in range(t)]
        norm_list = [ZZ(2)**(self_jordan[i][0] + valuation(GCD(self_jordan[i][1].coefficients()), 2))  for i in range(t)]
        dim_list = [(self_jordan[i][1].dim())  for i in range(t)]

        ## List of Hessian determinants and Hasse invariants for each Jordan (sub)chain
        ## (Note: This is not the same as O'Meara's Gram determinants, but ratios are the same!)  -- NOT SO GOOD...
        ## But it matters in condition (ii), so we multiply all by 2 (instead of dividing by 2 since only square-factors matter, and it's easier.)
        j = 0
        self_chain_det_list = [ self_jordan[j][1].Gram_det() * (scale_list[j]**dim_list[j])]
        other_chain_det_list = [ other_jordan[j][1].Gram_det() * (scale_list[j]**dim_list[j])]
        self_hasse_chain_list = [ self_jordan[j][1].scale_by_factor(ZZ(2)**self_jordan[j][0]).hasse_invariant__OMeara(2) ]
        other_hasse_chain_list = [ other_jordan[j][1].scale_by_factor(ZZ(2)**other_jordan[j][0]).hasse_invariant__OMeara(2) ]

        for j in range(1, t):
            self_chain_det_list.append(self_chain_det_list[j-1] * self_jordan[j][1].Gram_det() * (scale_list[j]**dim_list[j]))
            other_chain_det_list.append(other_chain_det_list[j-1] * other_jordan[j][1].Gram_det() * (scale_list[j]**dim_list[j]))
            self_hasse_chain_list.append(self_hasse_chain_list[j-1] \
                                         * hilbert_symbol(self_chain_det_list[j-1], self_jordan[j][1].Gram_det(), 2) \
                                         * self_jordan[j][1].hasse_invariant__OMeara(2))
            other_hasse_chain_list.append(other_hasse_chain_list[j-1] \
                                          * hilbert_symbol(other_chain_det_list[j-1], other_jordan[j][1].Gram_det(), 2) \
                                          * other_jordan[j][1].hasse_invariant__OMeara(2))


        ## SANITY CHECK -- check that the scale powers are strictly increasing
        for i in range(1, len(scale_list)):
            if scale_list[i-1] >= scale_list[i]:
                   raise RuntimeError("Oops!  There is something wrong with the Jordan Decomposition -- the given scales are not strictly increasing!")

        ## Test O'Meara's two conditions
        for i in range(t-1):

            ## Condition (i): Check that their (unit) ratio is a square (but it suffices to check at most mod 8).
            modulus = norm_list[i] * norm_list[i+1] / (scale_list[i] ** 2)
            if modulus > 8:
                   modulus = 8
            if (modulus > 1) and (((self_chain_det_list[i] / other_chain_det_list[i]) % modulus) != 1):
                return False

            ## Check O'Meara's condition (ii) when appropriate
            if norm_list[i+1] % (4 * norm_list[i]) == 0:
                if self_hasse_chain_list[i] * hilbert_symbol(norm_list[i] * other_chain_det_list[i], -self_chain_det_list[i], 2) \
                       != other_hasse_chain_list[i] * hilbert_symbol(norm_list[i], -other_chain_det_list[i], 2):      ## Nipp conditions
                    return False


        ## All tests passed for the prime 2.
        return True

    else:
        raise TypeError("Oops!  This should not have happened.")
def has_equivalent_Jordan_decomposition_at_prime(self, other, p):
    """
    Determines if the given quadratic form has a Jordan decomposition
    equivalent to that of self.

    INPUT:

    a QuadraticForm

    OUTPUT:

    boolean

    EXAMPLES::

        sage: Q1 = QuadraticForm(ZZ, 3, [1, 0, -1, 1, 0, 3])
        sage: Q2 = QuadraticForm(ZZ, 3, [1, 0, 0, 2, -2, 6])
        sage: Q3 = QuadraticForm(ZZ, 3, [1, 0, 0, 1, 0, 11])
        sage: [Q1.level(), Q2.level(), Q3.level()]
        [44, 44, 44]
        sage: Q1.has_equivalent_Jordan_decomposition_at_prime(Q2,2)
        False
        sage: Q1.has_equivalent_Jordan_decomposition_at_prime(Q2,11)
        False
        sage: Q1.has_equivalent_Jordan_decomposition_at_prime(Q3,2)
        False
        sage: Q1.has_equivalent_Jordan_decomposition_at_prime(Q3,11)
        True
        sage: Q2.has_equivalent_Jordan_decomposition_at_prime(Q3,2)
        True
        sage: Q2.has_equivalent_Jordan_decomposition_at_prime(Q3,11)
        False

    """
    ## Sanity Checks
    #if not isinstance(other, QuadraticForm):
    if not isinstance(other, type(self)):
        raise TypeError(
            "Oops!  The first argument must be of type QuadraticForm.")
    if not is_prime(p):
        raise TypeError("Oops!  The second argument must be a prime number.")

    ## Get the relevant local normal forms quickly
    self_jordan = self.jordan_blocks_by_scale_and_unimodular(p,
                                                             safe_flag=False)
    other_jordan = other.jordan_blocks_by_scale_and_unimodular(p,
                                                               safe_flag=False)

    ## DIAGNOSTIC
    #print "self_jordan = ", self_jordan
    #print "other_jordan = ", other_jordan

    ## Check for the same number of Jordan components
    if len(self_jordan) != len(other_jordan):
        return False

    ## Deal with odd primes:  Check that the Jordan component scales, dimensions, and discriminants are the same
    if p != 2:
        for i in range(len(self_jordan)):
            if (self_jordan[i][0] != other_jordan[i][0]) \
               or (self_jordan[i][1].dim() != other_jordan[i][1].dim()) \
               or (legendre_symbol(self_jordan[i][1].det() * other_jordan[i][1].det(), p) != 1):
                return False

        ## All tests passed for an odd prime.
        return True

    ## For p = 2:  Check that all Jordan Invariants are the same.
    elif p == 2:

        ## Useful definition
        t = len(self_jordan)  ## Define t = Number of Jordan components

        ## Check that all Jordan Invariants are the same (scale, dim, and norm)
        for i in range(t):
            if (self_jordan[i][0] != other_jordan[i][0]) \
               or (self_jordan[i][1].dim() != other_jordan[i][1].dim()) \
               or (valuation(GCD(self_jordan[i][1].coefficients()), p) != valuation(GCD(other_jordan[i][1].coefficients()), p)):
                return False

        ## DIAGNOSTIC
        #print "Passed the Jordan invariant test."

        ## Use O'Meara's isometry test 93:29 on p277.
        ## ------------------------------------------

        ## List of norms, scales, and dimensions for each i
        scale_list = [ZZ(2)**self_jordan[i][0] for i in range(t)]
        norm_list = [
            ZZ(2)**(self_jordan[i][0] +
                    valuation(GCD(self_jordan[i][1].coefficients()), 2))
            for i in range(t)
        ]
        dim_list = [(self_jordan[i][1].dim()) for i in range(t)]

        ## List of Hessian determinants and Hasse invariants for each Jordan (sub)chain
        ## (Note: This is not the same as O'Meara's Gram determinants, but ratios are the same!)  -- NOT SO GOOD...
        ## But it matters in condition (ii), so we multiply all by 2 (instead of dividing by 2 since only square-factors matter, and it's easier.)
        j = 0
        self_chain_det_list = [
            self_jordan[j][1].Gram_det() * (scale_list[j]**dim_list[j])
        ]
        other_chain_det_list = [
            other_jordan[j][1].Gram_det() * (scale_list[j]**dim_list[j])
        ]
        self_hasse_chain_list = [
            self_jordan[j][1].scale_by_factor(
                ZZ(2)**self_jordan[j][0]).hasse_invariant__OMeara(2)
        ]
        other_hasse_chain_list = [
            other_jordan[j][1].scale_by_factor(
                ZZ(2)**other_jordan[j][0]).hasse_invariant__OMeara(2)
        ]

        for j in range(1, t):
            self_chain_det_list.append(self_chain_det_list[j - 1] *
                                       self_jordan[j][1].Gram_det() *
                                       (scale_list[j]**dim_list[j]))
            other_chain_det_list.append(other_chain_det_list[j - 1] *
                                        other_jordan[j][1].Gram_det() *
                                        (scale_list[j]**dim_list[j]))
            self_hasse_chain_list.append(self_hasse_chain_list[j-1] \
                                         * hilbert_symbol(self_chain_det_list[j-1], self_jordan[j][1].Gram_det(), 2) \
                                         * self_jordan[j][1].hasse_invariant__OMeara(2))
            other_hasse_chain_list.append(other_hasse_chain_list[j-1] \
                                          * hilbert_symbol(other_chain_det_list[j-1], other_jordan[j][1].Gram_det(), 2) \
                                          * other_jordan[j][1].hasse_invariant__OMeara(2))

        ## SANITY CHECK -- check that the scale powers are strictly increasing
        for i in range(1, len(scale_list)):
            if scale_list[i - 1] >= scale_list[i]:
                raise RuntimeError(
                    "Oops!  There is something wrong with the Jordan Decomposition -- the given scales are not strictly increasing!"
                )

        ## DIAGNOSTIC
        #print "scale_list = ", scale_list
        #print "norm_list = ", norm_list
        #print "dim_list = ", dim_list
        #print
        #print "self_chain_det_list = ", self_chain_det_list
        #print "other_chain_det_list = ", other_chain_det_list
        #print "self_hasse_chain_list = ", self_hasse_chain_list
        #print "other_hasse_chain_det_list = ", other_hasse_chain_list

        ## Test O'Meara's two conditions
        for i in range(t - 1):

            ## Condition (i): Check that their (unit) ratio is a square (but it suffices to check at most mod 8).
            modulus = norm_list[i] * norm_list[i + 1] / (scale_list[i]**2)
            if modulus > 8:
                modulus = 8
            if (modulus > 1) and ((
                (self_chain_det_list[i] / other_chain_det_list[i]) % modulus)
                                  != 1):
                #print "Failed when i =", i, " in condition 1."
                return False

            ## Check O'Meara's condition (ii) when appropriate
            if norm_list[i + 1] % (4 * norm_list[i]) == 0:
                if self_hasse_chain_list[i] * hilbert_symbol(norm_list[i] * other_chain_det_list[i], -self_chain_det_list[i], 2) \
                       != other_hasse_chain_list[i] * hilbert_symbol(norm_list[i], -other_chain_det_list[i], 2):      ## Nipp conditions
                    #print "Failed when i =", i, " in condition 2."
                    return False

        ## All tests passed for the prime 2.
        return True

    else:
        raise TypeError("Oops!  This should not have happened.")