Ejemplo n.º 1
0
    def super_categories(self):
        """
        EXAMPLES::

            sage: PrincipalIdealDomains().super_categories()
            [Category of unique factorization domains]
        """
        return [UniqueFactorizationDomains()]
Ejemplo n.º 2
0
    def super_categories(self):
        """
        EXAMPLES::

            sage: Fields().super_categories()
            [Category of euclidean domains, Category of unique factorization domains, Category of division rings]

        """
        return [EuclideanDomains(), UniqueFactorizationDomains(), DivisionRings()]
from sage.structure.parent_gens import normalize_names
from sage.structure.element import is_Element
import sage.rings.ring as ring
import sage.rings.padics.padic_base_leaves as padic_base_leaves

from sage.rings.integer import Integer
from sage.rings.finite_rings.constructor import is_FiniteField
from sage.rings.finite_rings.integer_mod_ring import is_IntegerModRing

from sage.misc.cachefunc import weak_cached_function

from sage.categories.fields import Fields
_Fields = Fields()
from sage.categories.unique_factorization_domains import UniqueFactorizationDomains
_UFD = UniqueFactorizationDomains()
from sage.categories.integral_domains import IntegralDomains
_ID = IntegralDomains()
from sage.categories.commutative_rings import CommutativeRings
_CommutativeRings = CommutativeRings()

import weakref
_cache = weakref.WeakValueDictionary()


def PolynomialRing(base_ring,
                   arg1=None,
                   arg2=None,
                   sparse=False,
                   order='degrevlex',
                   names=None,