Ejemplo n.º 1
0
        def example(self):
            r"""
            Return an example of an irreducible complex reflection group.

            EXAMPLES::

                sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups
                sage: ComplexReflectionGroups().Finite().Irreducible().example()    # optional - gap3
                Irreducible complex reflection group of rank 3 and type G(4,2,3)
            """
            from sage.combinat.root_system.reflection_group_real import ReflectionGroup
            return ReflectionGroup((4, 2, 3))
Ejemplo n.º 2
0
        def example(self):
            r"""
            Return an example of a well-generated complex reflection group.

            EXAMPLES::

                sage: from sage.categories.complex_reflection_groups import ComplexReflectionGroups
                sage: ComplexReflectionGroups().Finite().WellGenerated().example()  # optional - gap3
                Reducible complex reflection group of rank 4 and type A2 x G(3,1,2)
            """
            from sage.combinat.root_system.reflection_group_real import ReflectionGroup
            return ReflectionGroup((1, 1, 3), (3, 1, 2))
Ejemplo n.º 3
0
def CoxeterGroup(data,
                 implementation="reflection",
                 base_ring=None,
                 index_set=None):
    """
    Return an implementation of the Coxeter group given by ``data``.

    INPUT:

    - ``data`` -- a Cartan type (or coercible into; see :class:`CartanType`)
      or a Coxeter matrix or graph

    - ``implementation`` -- (default: ``'reflection'``) can be one of
      the following:

      * ``'permutation'`` - as a permutation representation
      * ``'matrix'`` - as a Weyl group (as a matrix group acting on the
        root space); if this is not implemented, this uses the "reflection"
        implementation
      * ``'coxeter3'`` - using the coxeter3 package
      * ``'reflection'`` - as elements in the reflection representation; see
        :class:`~sage.groups.matrix_gps.coxeter_groups.CoxeterMatrixGroup`

    - ``base_ring`` -- (optional) the base ring for the ``'reflection'``
      implementation

    - ``index_set`` -- (optional) the index set for the ``'reflection'``
      implementation

    EXAMPLES:

    Now assume that ``data`` represents a Cartan type. If
    ``implementation`` is not specified, the reflection representation
    is returned::

        sage: W = CoxeterGroup(["A",2])
        sage: W
        Finite Coxeter group over Universal Cyclotomic Field with Coxeter matrix:
        [1 3]
        [3 1]

        sage: W = CoxeterGroup(["A",3,1]); W
        Coxeter group over Universal Cyclotomic Field with Coxeter matrix:
        [1 3 2 3]
        [3 1 3 2]
        [2 3 1 3]
        [3 2 3 1]

        sage: W = CoxeterGroup(['H',3]); W
        Finite Coxeter group over Universal Cyclotomic Field with Coxeter matrix:
        [1 3 2]
        [3 1 5]
        [2 5 1]

    We now use the ``implementation`` option::

        sage: W = CoxeterGroup(["A",2], implementation = "permutation") # optional - gap3
        sage: W                                                         # optional - gap3
        Permutation Group with generators [(1,3)(2,5)(4,6), (1,4)(2,3)(5,6)]
        sage: W.category()                       # optional - gap3
        Join of Category of finite permutation groups
             and Category of finite coxeter groups
             and Category of well generated finite irreducible complex reflection groups

        sage: W = CoxeterGroup(["A",2], implementation="matrix")
        sage: W
        Weyl Group of type ['A', 2] (as a matrix group acting on the ambient space)

        sage: W = CoxeterGroup(["H",3], implementation="matrix")
        sage: W
        Finite Coxeter group over Universal Cyclotomic Field with Coxeter matrix:
        [1 3 2]
        [3 1 5]
        [2 5 1]

        sage: W = CoxeterGroup(["H",3], implementation="reflection")
        sage: W
        Finite Coxeter group over Universal Cyclotomic Field with Coxeter matrix:
        [1 3 2]
        [3 1 5]
        [2 5 1]

        sage: W = CoxeterGroup(["A",4,1], implementation="permutation")
        Traceback (most recent call last):
        ...
        NotImplementedError: Coxeter group of type ['A', 4, 1] as permutation group not implemented

        sage: W = CoxeterGroup(["A",4], implementation="chevie"); W     # optional - gap3
        Irreducible real reflection group of rank 4 and type A4

    We use the different options for the "reflection" implementation::

        sage: W = CoxeterGroup(["H",3], implementation="reflection", base_ring=RR)
        sage: W
        Finite Coxeter group over Real Field with 53 bits of precision with Coxeter matrix:
        [1 3 2]
        [3 1 5]
        [2 5 1]
        sage: W = CoxeterGroup([[1,10],[10,1]], implementation="reflection", index_set=['a','b'], base_ring=SR)
        sage: W
        Finite Coxeter group over Symbolic Ring with Coxeter matrix:
        [ 1 10]
        [10  1]

    TESTS::

        sage: W = groups.misc.CoxeterGroup(["H",3])
    """
    if implementation not in [
            "permutation", "matrix", "coxeter3", "reflection", "chevie", None
    ]:
        raise ValueError("invalid type implementation")

    try:
        cartan_type = CartanType(data)
    except (
            TypeError, ValueError
    ):  # If it is not a Cartan type, try to see if we can represent it as a matrix group
        return CoxeterMatrixGroup(data, base_ring, index_set)

    if implementation is None:
        implementation = "matrix"

    if implementation == "reflection":
        return CoxeterMatrixGroup(cartan_type, base_ring, index_set)
    if implementation == "coxeter3":
        try:
            from sage.libs.coxeter3.coxeter_group import CoxeterGroup
        except ImportError:
            raise RuntimeError("coxeter3 must be installed")
        else:
            return CoxeterGroup(cartan_type)
    if implementation == "permutation" and is_chevie_available() and \
       cartan_type.is_finite() and cartan_type.is_irreducible():
        return CoxeterGroupAsPermutationGroup(cartan_type)
    elif implementation == "matrix":
        if cartan_type.is_crystallographic():
            return WeylGroup(cartan_type)
        return CoxeterMatrixGroup(cartan_type, base_ring, index_set)
    elif implementation == "chevie":
        from sage.combinat.root_system.reflection_group_real import ReflectionGroup
        return ReflectionGroup(data, index_set=index_set)

    raise NotImplementedError(
        "Coxeter group of type {} as {} group not implemented".format(
            cartan_type, implementation))