Ejemplo n.º 1
0
    def to_noncrossing_set_partition(self):
        r"""
        Return the noncrossing set partition (on half as many elements)
        corresponding to the perfect matching if the perfect matching is
        noncrossing, and otherwise gives an error.

        OUTPUT:

        The realization of ``self`` as a noncrossing set partition.

        EXAMPLES::

            sage: PerfectMatching([[1,3], [4,2]]).to_noncrossing_set_partition()
            Traceback (most recent call last):
            ...
            ValueError: matching must be non-crossing
            sage: PerfectMatching([[1,4], [3,2]]).to_noncrossing_set_partition()
            {{1, 2}}
            sage: PerfectMatching([]).to_noncrossing_set_partition()
            {}
        """
        if not self.is_noncrossing():
            raise ValueError("matching must be non-crossing")
        else:
            perm = self.to_permutation()
            perm2 = Permutation(
                [perm[2 * i] // 2 for i in range(len(perm) // 2)])
        return SetPartition(perm2.cycle_tuples())
Ejemplo n.º 2
0
        def __getitem__(self, i):
            """
            Return the basis element indexed by ``i``.

            INPUT:

            - ``i`` -- a set partition or a list of list of integers

            EXAMPLES::

                sage: w = SymmetricFunctionsNonCommutingVariables(QQ).dual().w()
                sage: w[[1], [2,3]]
                w{{1}, {2, 3}}
                sage: w[{1}, (2,3)]
                w{{1}, {2, 3}}
                sage: w[[]]
                w{}
            """
            if isinstance(i, SetPartition):
                return self.monomial(i)
            if i == []:
                return self.one()
            if not isinstance(i, tuple):
                i = (i, )
            return self.monomial(SetPartition(i))
Ejemplo n.º 3
0
    def standardization(self):
        """
        Return the standardization of ``self``.

        See :meth:`SetPartition.standardization` for details.

        EXAMPLES::

            sage: n = PerfectMatching([('c','b'),('d','f'),('e','a')])
            sage: n.standardization()
            [(1, 5), (2, 3), (4, 6)]

        """
        P = PerfectMatchings(2 * len(self))
        return P(SetPartition.standardization(self))
Ejemplo n.º 4
0
    def standardization(self):
        """
        Return the standardization of ``self``.

        See :meth:`SetPartition.standardization` for details.

        EXAMPLES::

            sage: n = PerfectMatching([('c','b'),('d','f'),('e','a')])
            sage: n.standardization()
            [(1, 5), (2, 3), (4, 6)]

        """
        P = PerfectMatchings(2*len(self))
        return P(SetPartition.standardization(self))
Ejemplo n.º 5
0
        def one_basis(self):
            r"""
            Return the index of the basis element containing `1`.

            OUTPUT:

            - The empty set partition

            EXAMPLES::

                sage: m = SymmetricFunctionsNonCommutingVariables(QQ).m()
                sage: m.one_basis()
                {}
                sage: w = SymmetricFunctionsNonCommutingVariables(QQ).dual().w()
                sage: w.one_basis()
                {}
            """
            return SetPartition([])
Ejemplo n.º 6
0
    def _element_constructor_(self, x):
        """
        Construct an element of ``self``.

        INPUT:

        - ``x`` -- a set partition or list of lists of integers

        EXAMPLES::

            sage: m = SymmetricFunctionsNonCommutingVariables(QQ).m()
            sage: m([[1,3],[2]])
            m{{1, 3}, {2}}
            sage: m(SetPartition([[1,3],[2]]))
            m{{1, 3}, {2}}
        """
        if isinstance(x, (list, tuple)):
            x = SetPartition(x)
        return super(NCSymBasis_abstract, self)._element_constructor_(x)
Ejemplo n.º 7
0
    def decomposition(self):
        """
        Find the decomposition of the matroid as a direct sum of indecomposable matroids.
        Return a partition of the groundset.
        Uses the algorithm of [PP19, Section 7].
        """
        B = self.basis()
        new_groundset = list(B) + list(self.groundset().difference(B))

        # construct matrix with permuted columns
        columns = [vector(self._A[:,self._groundset_to_index[e]]) for e in new_groundset]
        A = matrix(ZZ, columns).transpose().echelon_form()

        uf = DisjointSet(self.groundset())

        for i in xrange(A.nrows()):
            for j in xrange(i+1, A.ncols()):
                if A[i,j] != 0:
                    uf.union(new_groundset[i], new_groundset[j])

        return SetPartition(uf)