Ejemplo n.º 1
0
    def __init__(self, polys, domain):
        r"""
        The Python constructor.

        See :class:`DynamicalSystem` for details.

        EXAMPLES::

            sage: T.<x,y,w,u> = ProductProjectiveSpaces([1, 1], QQ)
            sage: DynamicalSystem_projective([x^2, y^2, w^2, u^2], domain=T)
            Dynamical System of Product of projective spaces P^1 x P^1 over Rational Field
              Defn: Defined by sending (x : y , w : u) to
                    (x^2 : y^2 , w^2 : u^2).
        """
        DynamicalSystem.__init__(self, polys, domain)
Ejemplo n.º 2
0
    def __init__(self, polys, domain):
        r"""
        The Python constructor.

        See :class:`DynamicalSystem` for details.

        EXAMPLES::

            sage: T.<x,y,w,u> = ProductProjectiveSpaces([1, 1], QQ)
            sage: DynamicalSystem_projective([x^2, y^2, w^2, u^2], domain=T)
            Dynamical System of Product of projective spaces P^1 x P^1 over Rational Field
              Defn: Defined by sending (x : y , w : u) to
                    (x^2 : y^2 , w^2 : u^2).
        """
        DynamicalSystem.__init__(self, polys, domain)
Ejemplo n.º 3
0
    def __init__(self, polys_or_rat_fncts, domain):
        r"""
        The Python constructor.

        See :class:`DynamicalSystem` for details.

        EXAMPLES::

            sage: A.<x,y> = AffineSpace(QQ, 2)
            sage: DynamicalSystem_affine([3/5*x^2, y^2/(2*x^2)], domain=A)
            Dynamical System of Affine Space of dimension 2 over Rational Field
              Defn: Defined on coordinates by sending (x, y) to
                    (3/5*x^2, y^2/(2*x^2))
        """
        L = polys_or_rat_fncts
        # Next attribute needed for _fast_eval and _fastpolys
        self._is_prime_finite_field = is_PrimeFiniteField(L[0].base_ring())
        DynamicalSystem.__init__(self, L, domain)
Ejemplo n.º 4
0
    def __init__(self, polys_or_rat_fncts, domain):
        r"""
        The Python constructor.

        See :class:`DynamicalSystem` for details.

        EXAMPLES::

            sage: A.<x,y> = AffineSpace(QQ, 2)
            sage: DynamicalSystem_affine([3/5*x^2, y^2/(2*x^2)], domain=A)
            Dynamical System of Affine Space of dimension 2 over Rational Field
              Defn: Defined on coordinates by sending (x, y) to
                    (3/5*x^2, y^2/(2*x^2))
        """
        L = polys_or_rat_fncts
        # Next attribute needed for _fast_eval and _fastpolys
        self._is_prime_finite_field = is_PrimeFiniteField(L[0].base_ring())
        DynamicalSystem.__init__(self, L, domain)