Ejemplo n.º 1
0
 def __init__(self, map_data, parent, construct = False):
     ModuleElement.__init__(self, parent)
     if construct:
         self._map = map_data
     else:
         self._map = ManinMap(parent._coefficients, parent._source, map_data)
Ejemplo n.º 2
0
class ModularSymbolElement_generic(ModuleElement):
    def __init__(self, map_data, parent, construct = False):
        ModuleElement.__init__(self, parent)
        if construct:
            self._map = map_data
        else:
            self._map = ManinMap(parent._coefficients, parent._source, map_data)

    def __reduce__(self):
        from sage.modular.pollack_stevens.modsym_element import create__ModSym_element
        return (create__ModSym_element, (self._map, self.parent()))

    def _repr_(self):
        return "Modular symbol of level %s with values in %s"%(self.parent().level(), self.parent().coefficient_module())

    def dict(self):
        D = {}
        for g in self.parent().source().gens():
            D[g] = self._map[g]
        return D

    def weight(self):
        return self.parent().weight()

    def values(self):
        return [self._map[g] for g in self.parent().source().gens()]

    def _normalize(self):
        for val in self._map:
            val.normalize()
        return self

    def is_zero(self, prec=None):
        for mu in self.values():
            if not mu.is_zero(prec):
                return False
        return True

    def __cmp__(self, other):
        gens = self.parent().source().gens()
        for g in gens:
            c = cmp(self._map[g], other._map[g])
            if c: return c
        return 0

    def _add_(self, right):
        """
        Returns self + right
        """
#        EXAMPLES::
#
#            sage: E = EllipticCurve('11a')
#            sage: from sage.modular.pollack_stevens.space import ps_modsym_from_elliptic_curve
#            sage: phi = ps_modsym_from_elliptic_curve(E); phi.values()
#            [-1/5, 3/2, -1/2]
#            sage: phi + phi
#            Modular symbol of level 11 with values in Sym^0 Q^2
#            sage: (phi + phi).values()
#            [-2/5, 3, -1]
#        """
        return self.__class__(self._map + right._map, self.parent(), construct=True)

    def _lmul_(self, right):
        """
        Returns self * right
        """
#        EXAMPLES::
#
#            sage: E = EllipticCurve('11a')
#            sage: from sage.modular.pollack_stevens.space import ps_modsym_from_elliptic_curve
#            sage: phi = ps_modsym_from_elliptic_curve(E); phi.values()
#            [-1/5, 3/2, -1/2]
#            sage: 2*phi
#            Modular symbol of level 11 with values in Sym^0 Q^2
#            sage: (2*phi).values()
#            [-2/5, 3, -1]
#        """
        return self.__class__(self._map * right, self.parent(), construct=True)

    def _rmul_(self, right):
        """
        Returns self * right
        """
#        EXAMPLES::
#            sage: E = EllipticCurve('11a')
#            sage: from sage.modular.pollack_stevens.space import ps_modsym_from_elliptic_curve
#            sage: phi = ps_modsym_from_elliptic_curve(E); phi.values()
#            [-1/5, 3/2, -1/2]
#            sage: phi*2
#            Modular symbol of level 11 with values in Sym^0 Q^2
#            sage: (phi*2).values()
#            [-2/5, 3, -1]
#        """
        return self.__class__(self._map * right, self.parent(), construct=True)

    def _sub_(self, right):
        """
        Returns self - right
        """
#        EXAMPLES::
#
#            sage: E = EllipticCurve('11a')
#            sage: from sage.modular.pollack_stevens.space import ps_modsym_from_elliptic_curve
#            sage: phi = ps_modsym_from_elliptic_curve(E); phi.values()
#            [-1/5, 3/2, -1/2]
#            sage: phi - phi
#            Modular symbol of level 11 with values in Sym^0 Q^2
#            sage: (phi - phi).values()
#            [0, 0, 0]
#        """
        return self.__class__(self._map - right._map, self.parent(), construct=True)

    def plus_part(self):
        r"""
        Returns the plus part of self -- i.e. self + self | [1,0,0,-1].

        Note that we haven't divided by 2.  Is this a problem?

        OUTPUT:

        - self + self | [1,0,0,-1]

        EXAMPLES::

            sage: MS = OverconvergentModularSymbols(3, p=5, prec_cap=5, weight=2)
            sage: Phi = MS.random_element()
            sage: Phi_p = Phi.plus_part()
            sage: Phi_m = Phi.minus_part()
            sage: Phi_p + Phi_m == 2 * Phi
            True
            sage: Phi_p.minus_part() == 0
            True
            sage: Phi_m.plus_part() == 0
            True
            sage: Phi_p.hecke(2) == Phi.hecke(2).plus_part()
            True
        """
#        EXAMPLES::
#
#            sage: E = EllipticCurve('11a')
#            sage: from sage.modular.pollack_stevens.space import ps_modsym_from_elliptic_curve
#            sage: phi = ps_modsym_from_elliptic_curve(E); phi.values()
#            [-1/5, 3/2, -1/2]
#            sage: (phi.plus_part()+phi.minus_part()) == 2 * phi
#            True
#        """
        #if sign != 0 could simply return 2*self or 0 accordingly
        S0N = Sigma0(self.parent().level())
        return self + self * S0N(minusproj)

    def minus_part(self):
        r"""
        Returns the minus part of self -- i.e. self - self | [1,0,0,-1]

        Note that we haven't divided by 2.  Is this a problem?

        OUTPUT:

        - self - self | [1,0,0,-1]

        EXAMPLES::

            sage: MS = OverconvergentModularSymbols(11, p=3, prec_cap=5, weight=0)
            sage: Phi = MS.random_element()
            sage: Phi_p = Phi.plus_part()
            sage: Phi_m = Phi.minus_part()
            sage: Phi_p + Phi_m == 2 * Phi
            True
            sage: Phi_p.minus_part() == 0
            True
            sage: Phi_m.plus_part() == 0
            True
            sage: Phi_m.hecke(2) == Phi.hecke(2).minus_part()
            True
        """
#        EXAMPLES::
#
#            sage: E = EllipticCurve('11a')
#            sage: from sage.modular.pollack_stevens.space import ps_modsym_from_elliptic_curve
#            sage: phi = ps_modsym_from_elliptic_curve(E); phi.values()
#            [-1/5, 3/2, -1/2]
#            sage: (phi.plus_part()+phi.minus_part()) == phi * 2
#            True
#        """
        S0N = Sigma0(self.parent().level())
        return self - self * S0N(minusproj)

    def hecke(self, ell, algorithm="prep"):
        r"""
        Returns self | `T_{\ell}` by making use of the precomputations in
        self.prep_hecke()

        INPUT:

        - ``ell`` -- a prime

        - ``algorithm`` -- a string, either 'prep' (default) or
          'naive'

        OUTPUT:

        - The image of this element under the hecke operator
          `T_{\ell}`

        ALGORITHMS:

        - If ``algorithm == 'prep'``, precomputes a list of matrices
          that only depend on the level, then uses them to speed up
          the action.

        - If ``algorithm == 'naive'``, just acts by the matrices
          defining the Hecke operator.  That is, it computes
          sum_a self | [1,a,0,ell] + self | [ell,0,0,1],
          the last term occurring only if the level is prime to ell.
        """
#        EXAMPLES::
#
#            sage: E = EllipticCurve('11a')
#            sage: from sage.modular.pollack_stevens.space import ps_modsym_from_elliptic_curve
#            sage: phi = ps_modsym_from_elliptic_curve(E); phi.values()
#            [-1/5, 3/2, -1/2]
#            sage: phi.hecke(2) == phi * E.ap(2)
#            True
#            sage: phi.hecke(3) == phi * E.ap(3)
#            True
#            sage: phi.hecke(5) == phi * E.ap(5)
#            True
#            sage: phi.hecke(101) == phi * E.ap(101)
#            True
#
#            sage: all([phi.hecke(p, algorithm='naive') == phi * E.ap(p) for p in [2,3,5,101]])
#            True
#        """
        return self.__class__(self._map.hecke(ell, algorithm), self.parent(), construct=True)

    def valuation(self, p):
        if p is None:
            raise ValueError("Must specify p.")
        return min([val.valuation(q) for val in self._map])

    def diagonal_valuation(self, p):
        if p is None:
            raise ValueError("Must specify p.")
        return min([val.diagonal_valuation(p) for val in self._map])

    @cached_method
    def is_Tq_eigensymbol(self,q,p=None,M=None):
        r"""
        Determines if self is an eigenvector for `T_q` modulo `p^M`

        INPUT:

        - ``q`` -- prime of the Hecke operator

        - ``p`` -- prime we are working modulo

        - ``M`` -- degree of accuracy of approximation

        OUTPUT:

        - True/False
        """
#        EXAMPLES::
#
#            sage: E = EllipticCurve('11a')
#            sage: from sage.modular.pollack_stevens.space import ps_modsym_from_elliptic_curve
#            sage: phi = ps_modsym_from_elliptic_curve(E)
#            sage: phi.values()
#            [-1/5, 3/2, -1/2]
#            sage: phi_ord = phi.p_stabilize(p = 3, ap = E.ap(3), M = 10, ordinary = True)
#            sage: phi_ord.is_Tq_eigensymbol(2,3,10)
#            True
#            sage: phi_ord.is_Tq_eigensymbol(2,3,100)
#            False
#            sage: phi_ord.is_Tq_eigensymbol(2,3,1000)
#            False
#            sage: phi_ord.is_Tq_eigensymbol(3,3,10)
#            True
#            sage: phi_ord.is_Tq_eigensymbol(3,3,100)
#            False
#        """
        try:
            aq = self.Tq_eigenvalue(q, p, M)
            return True
        except ValueError:
            return False

    # what happens if a cached method raises an error?  Is it recomputed each time?
    @cached_method
    def Tq_eigenvalue(self, q, p=None, M=None, check=True):
        r"""
        Eigenvalue of `T_q` modulo `p^M`

        INPUT:

        - ``q`` -- prime of the Hecke operator

        - ``p`` -- prime we are working modulo (default: None)

        - ``M`` -- degree of accuracy of approximation (default: None)

        - ``check`` -- check that `self` is an eigensymbol

        OUTPUT:

        - Constant `c` such that `self|T_q - c * self` has valuation greater than
          or equal to `M` (if it exists), otherwise raises ValueError
        """
#        EXAMPLES::
#
#            sage: E = EllipticCurve('11a')
#            sage: from sage.modular.pollack_stevens.space import ps_modsym_from_elliptic_curve
#            sage: phi = ps_modsym_from_elliptic_curve(E)
#            sage: phi.values()
#            [-1/5, 3/2, -1/2]
#            sage: phi_ord = phi.p_stabilize(p = 3, ap = E.ap(3), M = 10, ordinary = True)
#            sage: phi_ord.Tq_eigenvalue(2,3,10) + 2
#            O(3^10)
#
#            sage: phi_ord.Tq_eigenvalue(3,3,10)
#            2 + 3^2 + 2*3^3 + 2*3^4 + 2*3^6 + 3^8 + 2*3^9 + O(3^10)
#            sage: phi_ord.Tq_eigenvalue(3,3,100)
#            Traceback (most recent call last):
#            ...
#            ValueError: not a scalar multiple
#        """
        qhecke = self.hecke(q)
        gens = self.parent().source().gens()
        if p is None:
            p = self.parent().prime()   #CHANGE THIS
        i = 0
        g = gens[i]
        verbose("Computing eigenvalue")
        while self._map[g].is_zero(p, M):
            if not qhecke._map[g].is_zero(p, M):
                raise ValueError("not a scalar multiple")
            i += 1
            try:
                g = gens[i]
            except IndexError:
                raise ValueError("self is zero")
        aq = self._map[g].find_scalar(qhecke._map[g], p, M, check)
        verbose("Found eigenvalues of %s"%(aq))
        if check:
            verbose("Checking that this is actually an eigensymbol")
            if p is None or M is None:
                for g in gens[1:]:
                    if qhecke._map[g] != aq * self._map[g]:
                        raise ValueError("not a scalar multiple")
            elif (qhecke - aq * self).valuation(p) < M:
                raise ValueError("not a scalar multiple")
        return aq

    def is_ordinary(self, p=None):
        has_prime = True
        try:
            p = self.parent().prime()
        except:
            has_prime == False
            if p is None:
                raise ValueError("If self doesn't have a prime, must specify p.")
        try:
            ap = self.Tq_eigenvalue(p)  #could take up to precision 1?
        except ValueError:
            raise NotImplementedError("is_ordinary currently only implemented for Up eigensymbols.")
        if has_prime:
            return ap.valuation() == 0
        else:
            return ap.valuation(p) == 0

    def reduce_precision(self, M):
        r"""
        Only holds on to `M` moments of each value of self
        """
        return self.__class__(self._map.reduce_precision(M), self.parent(), construct=True)

    def precision_absolute(self):
        r"""
        Returns the number of moments of each value of self
        """
        return min([a.precision_absolute() for a in self._map])

    def normalize(self):
        for val in self._map:
            val.normalize()
        return self

    def _consistency_check(self):
        """
            Check that the map really does satisfy the Manin relations loop (for debugging).
            The two and three torsion relations are checked and it is checked that the symbol
            adds up correctly around the fundamental domain

            EXAMPLES::

                sage: D = OverconvergentDistributions(0, 7, base=Qp(7,5))
                sage: MS = OverconvergentModularSymbols(14, coefficients=D);
                sage: MR = MS.source()
                sage: V = D.approx_module()
                sage: Phi_dict = {MR.gens()[0]:7 * V((5 + 6*7 + 7^2 + 4*7^3 + 5*7^4 + O(7^5), 6 + 5*7 + 2*7^2 + 3*7^3 + O(7^4), 4 + 5*7 + 7^2 + O(7^3), 2 + 7 + O(7^2), 4 + O(7))), MR.gens()[1]:7 * V((4 + 2*7 + 4*7^2 + 5*7^3 + O(7^5), 5 + 7^2 + 4*7^3 + O(7^4), 1 + 7 + 5*7^2 + O(7^3), 2 + O(7^2), 4 + O(7))), MR.gens()[2]:7 * V((3 + 6*7 + 6*7^2 + 5*7^3 + 7^4 + O(7^5), 6 + 5*7 + 5*7^3 + O(7^4), 3 + 6*7^2 + O(7^3), 6 + 2*7 + O(7^2), O(7))), MR.gens()[3]:7 * V((5 + 3*7 + 4*7^2 + 7^3 + 3*7^4 + O(7^5), 2 + 4*7^2 + 2*7^3 + O(7^4), 1 + 4*7 + 2*7^2 + O(7^3), 6*7 + O(7^2), 6 + O(7))), MR.gens()[4]:7 * V((3 + 2*7^2 + 3*7^3 + 3*7^4 + O(7^5), 5*7 + 4*7^2 + 2*7^3 + O(7^4), 6 + 4*7 + 2*7^2 + O(7^3), 2 + 3*7 + O(7^2), O(7)))}
                sage: Phi = MS(Phi_dict)
                sage: Phi._consistency_check()
                This modular symbol satisfies the manin relations
        """
#            sage: from sage.modular.pollack_stevens.space import ps_modsym_from_elliptic_curve
#            sage: E = EllipticCurve('37a1')
#            sage: phi = ps_modsym_from_elliptic_curve(E)
#            sage: phi._consistency_check()
#            This modular symbol satisfies the manin relations
        f = self._map
        MR = self._map._manin
        ## Test two torsion relations
        for g in MR.reps_with_two_torsion():
            gamg = MR.two_torsion_matrix(g)
            if not (f[g]*gamg + f[g]).is_zero():
                verbose("f[g]*gamg + f[g] equals: %s"%(f[g]*gamg + f[g]))
                raise ValueError("Two torsion relation failed with",g)

        ## Test three torsion relations
        for g in MR.reps_with_three_torsion():
            gamg = MR.three_torsion_matrix(g)
            if not (f[g]*(gamg**2) + f[g]*gamg + f[g]).is_zero():
                verbose("f[g]*(gamg**2) + f[g]*gamg + f[g] equals: %s"%(f[g]*(gamg**2) + f[g]*gamg + f[g]))
                raise ValueError("Three torsion relation failed with",g)

        ## Test that the symbol adds to 0 around the boundary of the fundamental domain
        t = self.parent().coefficient_module().zero_element()
        for g in MR.gens()[1:]:
            if (not g in MR.reps_with_two_torsion()) and (not g in MR.reps_with_three_torsion()):
                t += f[g] * MR.gammas[g] - f[g]
            else:
                if g in MR.reps_with_two_torsion():
                    t -= f[g]
                else:
                    t -= f[g]

        id = MR.gens()[0]
        if f[id]*MR.gammas[id] - f[id] != -t:
            print -t
            print "------------"
            print f[id]*MR.gammas[id] - f[id]
            print "------------"
            print f[id]*MR.gammas[id] - f[id]+t
            verbose("Sum around loop is: %s"%(f[id]*MR.gammas[id] - f[id]+t))
            raise ValueError("Does not add up correctly around loop")

        print "This modular symbol satisfies the manin relations"

    def __call__(self, a):
        return self._map(a)