Ejemplo n.º 1
0
def taut_cone_homological_dim(tri, angle):
    # find the dimension of the projection of the taut cone into
    # homology

    # boundaries of tets
    bdys = zeroth_coboundary(tri)
    bdys = matrix_transpose(bdys)
    rays = taut_rays(tri, angle)
    # but these are all 'upwards', so we need to fix the
    # co-orientations
    coorient = is_transverse_taut(tri, angle, return_type = "face_coorientations")
    rays = [[int(a * b) for a, b in zip(coorient, ray)] for ray in rays]

    # now work in the space of two-chains
    Rays = IntegerLattice(rays + bdys)
    Bdys = Matrix(bdys)
    Cobs = Bdys.transpose()
    Anns = Cobs.kernel()
    return Rays.intersection(Anns).dimension()
Ejemplo n.º 2
0
def run_tests(num_to_check=10, smaller_num_to_check = 10):

    import taut
    veering_isosigs = parse_data_file("Data/veering_census.txt")
    print("testing is_taut")
    for sig in random.sample(veering_isosigs, num_to_check):
        tri, angle = taut.isosig_to_tri_angle(sig)
        assert taut.is_taut(tri, angle), sig

    print("testing isosig round trip")
    for sig in random.sample(veering_isosigs, num_to_check):
        tri, angle = taut.isosig_to_tri_angle(sig)
        recovered_sig = taut.isosig_from_tri_angle(tri, angle)
        assert sig == recovered_sig, sig
        # we only test this round trip - the other round trip does not
        # make sense because tri->isosig is many to one.

    import transverse_taut
    print("testing is_transverse_taut")
    for sig in random.sample(veering_isosigs, num_to_check):
        tri, angle = taut.isosig_to_tri_angle(sig)
        assert transverse_taut.is_transverse_taut(tri, angle), sig

    non_transverse_taut_isosigs = parse_data_file("Data/veering_non_transverse_taut_examples.txt")
    print("testing not is_transverse_taut")
    for sig in non_transverse_taut_isosigs:
        tri, angle = taut.isosig_to_tri_angle(sig)
        assert not transverse_taut.is_transverse_taut(tri, angle), sig

    import veering
    print("testing is_veering")
    for sig in random.sample(veering_isosigs, num_to_check):
        tri, angle = taut.isosig_to_tri_angle(sig)
        assert veering.is_veering(tri, angle), sig

    # tri, angle = taut.isosig_to_tri_angle("cPcbbbdxm_10")
    # explore_mobius_surgery_graph(tri, angle, max_tetrahedra = 12)
    # # tests to see that it makes only veering triangulations as it goes

    import veering_dehn_surgery
    print("testing veering_dehn_surgery")
    for sig in random.sample(veering_isosigs, num_to_check):
        tri, angle = taut.isosig_to_tri_angle(sig)
        for face_num in veering_dehn_surgery.get_mobius_strip_indices(tri):
            (tri_s, angle_s, face_num_s) = veering_dehn_surgery.veering_mobius_dehn_surgery(tri, angle, face_num)
            assert veering.is_veering(tri_s, angle_s), sig
            
    import veering_fan_excision
    print("testing veering_fan_excision")
    m003, _ = taut.isosig_to_tri_angle('cPcbbbdxm_10')
    m004, _ = taut.isosig_to_tri_angle('cPcbbbiht_12')
    for sig in random.sample(veering_isosigs, num_to_check):
        tri, angle = taut.isosig_to_tri_angle(sig)
        tet_types = veering.is_veering(tri, angle, return_type = "tet_types")
        if tet_types.count("toggle") == 2:
            excised_tri, _ = veering_fan_excision.excise_fans(tri, angle)
            assert ( excised_tri.isIsomorphicTo(m003) != None or
                     excised_tri.isIsomorphicTo(m004) != None ), sig

    import pachner
    print("testing pachner with taut structure")
    for sig in random.sample(veering_isosigs, num_to_check):
        tri, angle = taut.isosig_to_tri_angle(sig)
        face_num = random.randrange(tri.countTriangles())
        result = pachner.twoThreeMove(tri, face_num, angle = angle, return_edge = True)  
        if result != False: 
            tri2, angle2, edge_num = result
            tri3, angle3 = pachner.threeTwoMove(tri2, edge_num, angle = angle2)
            assert taut.isosig_from_tri_angle(tri, angle) == taut.isosig_from_tri_angle(tri3, angle3), sig

    import branched_surface
    import regina
    print("testing branched_surface and pachner with branched surface")
    for sig in random.sample(veering_isosigs, num_to_check):
        tri, angle = taut.isosig_to_tri_angle(sig)
        tri_original = regina.Triangulation3(tri) #copy
        branch = branched_surface.upper_branched_surface(tri, angle, return_lower = random.choice([True, False]))
        
        ### test branch isosig round trip
        sig_with_branch = branched_surface.isosig_from_tri_angle_branch(tri, angle, branch)
        tri2, angle2, branch2 = branched_surface.isosig_to_tri_angle_branch(sig_with_branch)
        assert (branch == branch2) and (angle == angle2), sig

        branch_original = branch[:] #copy
        face_num = random.randrange(tri.countTriangles())
        out = pachner.twoThreeMove(tri, face_num, branch = branch, return_edge = True)
        if out != False:
            tri, possible_branches, edge_num = out
            tri, branch = pachner.threeTwoMove(tri, edge_num, branch = possible_branches[0])
            all_isoms = tri.findAllIsomorphisms(tri_original)
            all_branches = [branched_surface.apply_isom_to_branched_surface(branch, isom) for isom in all_isoms]
            assert branch_original in all_branches, sig

    import flow_cycles
    import drill
    print("testing taut and branched drill + semiflows on drillings")
    for sig in random.sample(veering_isosigs, smaller_num_to_check):
        tri, angle = taut.isosig_to_tri_angle(sig)
        branch = branched_surface.upper_branched_surface(tri, angle) ### also checks for veering and transverse taut
        found_loops = flow_cycles.find_flow_cycles(tri, branch)
        for loop in random.sample(found_loops, min(len(found_loops), 5)):  ## drill along at most 5 loops
            tri, angle = taut.isosig_to_tri_angle(sig)
            branch = branched_surface.upper_branched_surface(tri, angle) 
            tri_loop = flow_cycles.flow_cycle_to_triangle_loop(tri, branch, loop)
            if tri_loop != False: 
                if not flow_cycles.tri_loop_is_boundary_parallel(tri_loop, tri):
                    drill.drill(tri, tri_loop, angle = angle, branch = branch, sig = sig)
                    assert branched_surface.has_non_sing_semiflow(tri, branch), sig

    print("all basic tests passed")

    try:
        import snappy
        import snappy_util
        snappy_working = True
    except:
        print("failed to import from snappy?")
        snappy_working = False

    if snappy_working:        
        print("testing algebraic intersection")
        census = snappy.OrientableCuspedCensus() # not a set or list, so can't use random.sample
        for i in range(10):
            M = random.choice(census)
            n = M.num_cusps()
            peripheral_curves = M.gluing_equations()[-2*n:]
            for i in range(2*n):
                for j in range(i, 2*n):
                    alg_int = snappy_util.algebraic_intersection(peripheral_curves[i], peripheral_curves[j])
                    if i % 2 == 0 and j == i + 1:
                        assert alg_int == 1, M.name()
                    else:
                        assert alg_int == 0, M.name()
                       
    if snappy_working:
        import veering_drill_midsurface_bdy
        print("testing veering drilling and filling")
        for sig in random.sample(veering_isosigs[:3000], num_to_check):
            T, per = veering_drill_midsurface_bdy.drill_midsurface_bdy(sig)
            M = snappy.Manifold(T.snapPea())
            M.set_peripheral_curves("shortest")
            L = snappy_util.get_slopes_from_peripherals(M, per)
            M.dehn_fill(L)
            N = snappy.Manifold(sig.split("_")[0])
            assert M.is_isometric_to(N), sig

    if snappy_working:
        print("all tests depending on snappy passed")
   
    # try:
    #     from hashlib import md5
    #     from os import remove
    #     import pyx
    #     from boundary_triangulation import draw_triangulation_boundary_from_veering_isosig
    #     pyx_working = True
    # except:
    #     print("failed to import from pyx?")
    #     pyx_working = False

    # ladders_style_sigs = {
    #     "cPcbbbiht_12": "f34c1fdf65db9d02994752814803ae01",
    #     "gLLAQbecdfffhhnkqnc_120012": "091c85b4f4877276bfd8a955b769b496",
    #     "kLALPPzkcbbegfhgijjhhrwaaxnxxn_1221100101": "a0f15a8454f715f492c74ce1073a13a4",
    # }

    # geometric_style_sigs = {
    #     "cPcbbbiht_12": "1e74d0b68160c4922e85a5adb20a0f1d",
    #     "gLLAQbecdfffhhnkqnc_120012": "856a1fce74eb64f519bcda083303bd8f",
    #     "kLALPPzkcbbegfhgijjhhrwaaxnxxn_1221100101": "33bd23b34c5d977a103fa50ffe63120a",
    # }

    # args = {
    #     "draw_boundary_triangulation":True,
    #     "draw_triangles_near_poles": False,
    #     "ct_depth":-1,
    #     "ct_epsilon":0.03,
    #     "global_drawing_scale": 4,
    #     "delta": 0.2,
    #     "ladder_width": 10.0,
    #     "ladder_height": 20.0,
    #     "draw_labels": True,
    # }

    # shapes_data = read_from_pickle("Data/veering_shapes_up_to_ten_tetrahedra.pkl")

    # if pyx_working:
    #     for sig in ladders_style_sigs:
    #         print("testing boundary triangulation pictures, ladder style", sig)
    #         args["tet_shapes"] = shapes_data[sig]
    #         args["style"] = "ladders"
    #         file_name = draw_triangulation_boundary_from_veering_isosig(sig, args = args) 
    #         f = open(file_name, "rb")
    #         file_hash = md5(f.read())
    #         assert file_hash.hexdigest() == ladders_style_sigs[sig]
    #         f.close()
    #         remove(file_name)
        
    # if pyx_working:
    #     for sig in geometric_style_sigs:
    #         print("testing boundary triangulation pictures, ladder style", sig)
    #         args["tet_shapes"] = shapes_data[sig]
    #         args["style"] = "geometric"
    #         file_name = draw_triangulation_boundary_from_veering_isosig(sig, args = args) 
    #         f = open(file_name, "rb")
    #         file_hash = md5(f.read())
    #         assert file_hash.hexdigest() == geometric_style_sigs[sig]
    #         f.close()
    #         remove(file_name)

    # if pyx_working: 
    #     print("all tests depending on pyx passed")

    veering_polys = {
        "cPcbbbiht_12": [-4, -1, 1, 4],
        "eLMkbcddddedde_2100": [-2, -2, -2, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 2, 2],
        "gLLAQbecdfffhhnkqnc_120012": [-1, -1, -1, -1, 1, 1, 1, 1],
        "gLLPQcdfefefuoaaauo_022110": [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1],
    }

    # veering_polys = { ### old
    #     "cPcbbbiht_12": "a^3 - 4*a^2 + 4*a - 1",
    #     "eLMkbcddddedde_2100": "a^6*b - a^6 - 2*a^5*b - a^4*b^2 + a^5 + 2*a^4*b + a^3*b^2 - 2*a^3*b + a^3 + 2*a^2*b + a*b^2 - a^2 - 2*a*b - b^2 + b",
    #     "gLLAQbecdfffhhnkqnc_120012": "a^7 + a^6 + a^5 + a^4 - a^3 - a^2 - a - 1",
    #     "gLLPQcdfefefuoaaauo_022110": "a^12*b^3 - a^11*b^2 - a^10*b^3 - a^10*b^2 - a^7*b^3 - a^7*b^2 - a^6*b^3 + a^7*b + a^5*b^2 - a^6 - a^5*b - a^5 - a^2*b - a^2 - a*b + 1",
    # }

    taut_polys = {
        "cPcbbbiht_12": [-3, 1, 1],
        "eLMkbcddddedde_2100": [-1, -1, -1, 1, 1],
        "iLLAwQcccedfghhhlnhcqeesr_12001122": [],
    }

    # taut_polys = { ### old
    #     "cPcbbbiht_12": "a^2 - 3*a + 1",
    #     "eLMkbcddddedde_2100": "a^2*b - a^2 - a*b - b^2 + b",
    #     "iLLAwQcccedfghhhlnhcqeesr_12001122": "0",
    # }

    torus_bundles = [
        "cPcbbbiht_12",
        "eLMkbcdddhhqqa_1220",
        "gLMzQbcdefffhhqqqdl_122002",
    ]

    measured = [
        "gLLAQbecdfffhhnkqnc_120012",
        "iLLALQcccedhgghhlnxkxrkaa_12001112",
        "iLLAwQcccedfghhhlnhcqeesr_12001122",
    ]

    empties = [
        "fLAMcaccdeejsnaxk_20010",
        "gLALQbcbeeffhhwsras_211220",
        "hLALAkbcbeefgghhwsraqj_2112202",
    ]

    try:
        from sage.rings.integer_ring import ZZ
        sage_working = True
    except:
        print("failed to import from sage?")
        sage_working = False

    if sage_working:
        import taut_polytope
        print("testing is_layered")
        for sig in veering_isosigs[:17]:
            assert taut_polytope.is_layered(sig), sig
        for sig in veering_isosigs[17:21]:
            assert not taut_polytope.is_layered(sig), sig

    if sage_working:
        import fibered
        print("testing is_fibered")
        mflds = parse_data_file("Data/mflds_which_fiber.txt")
        mflds = [line.split("\t")[0:2] for line in mflds]
        for (name, kind) in random.sample(mflds, num_to_check):        
            assert fibered.is_fibered(name) == (kind == "fibered"), name

    if sage_working:
        import veering_polynomial
        import taut_polynomial
        print("testing veering poly")
        for sig in veering_polys:
            p = veering_polynomial.veering_polynomial(sig)
            assert check_polynomial_coefficients(p, veering_polys[sig]), sig
            ### Nov 2021: sage 9.4 changed how smith normal form works, which changed our polynomials
            ### to equivalent but not equal polynomials. To avoid this kind of change breaking things
            ### in the future, we changed to comparing the list of coefficients.
            # assert p.__repr__() == veering_polys[sig]
        print("testing taut poly")
        for sig in taut_polys:
            p = taut_polynomial.taut_polynomial_via_tree(sig)
            assert check_polynomial_coefficients(p, taut_polys[sig]), sig
        #     assert p.__repr__() == taut_polys[sig]
        print("testing divide")
        for sig in random.sample(veering_isosigs[:3000], num_to_check):
            p = veering_polynomial.veering_polynomial(sig)
            q = taut_polynomial.taut_polynomial_via_tree(sig)
            if q == 0:
                assert p == 0, sig
            else:
                assert q.divides(p), sig

    if sage_working:
        print("testing alex")
        for sig in random.sample(veering_isosigs[:3000], num_to_check):        
            snap_sig = sig.split("_")[0]
            M = snappy.Manifold(snap_sig)
            if M.homology().betti_number() == 1:
                assert taut_polynomial.taut_polynomial_via_tree(sig, mode = "alexander") == M.alexander_polynomial(), sig

    if sage_working:
        # would be nice to automate this - need to fetch the angle
        # structure say via z_charge.py...
        print("testing is_torus_bundle")
        for sig in torus_bundles: 
            assert taut_polytope.is_torus_bundle(sig), sig

    if sage_working:
        # ditto
        print("testing is_layered")
        for sig in torus_bundles:
            assert taut_polytope.is_layered(sig), sig
        print("testing measured")
        for sig in measured:
            assert taut_polytope.LMN_tri_angle(sig) == "M", sig
        print("testing empty")
        for sig in empties:
            assert taut_polytope.LMN_tri_angle(sig) == "N", sig

    if sage_working:  # warning - this takes random amounts of time!
        print("testing hom dim")
        for sig in random.sample(veering_isosigs[:3000], 3): # magic number
            # dimension = zero if and only if nothing is carried.
            assert (taut_polytope.taut_cone_homological_dim(sig) == 0) == (taut_polytope.LMN_tri_angle(sig) == "N"), sig

    if sage_working:      

        boundary_cycles = {
            ("eLMkbcddddedde_2100",(2,5,5,1,3,4,7,1)): "((-7, -7, 0, 0, 4, -3, 7, 0), (7, 7, 0, 0, -4, 3, -7, 0))",
            ("iLLLQPcbeegefhhhhhhahahha_01110221",(0,1,0,0,0,1,0,0,0,0,0,0,1,0,1,0)): "((0, 0, -1, 1, 1, 0, 1, 1, -1, 0, 0, 0, 0, 1, 0, 1), (0, 0, 1, -1, -1, 0, -1, -1, 1, 0, 0, 0, 0, -1, 0, -1))",
            ("ivvPQQcfhghgfghfaaaaaaaaa_01122000",(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)): "((1, 1, 2, 0, -1, 2, 1, -3, 0, -1, 0, -2, -1, 0, 3, -2), (1, 1, 0, 2, -1, 0, -3, 1, 2, -1, -2, 0, 3, -2, -1, 0), (-2, 0, -3, 1, 2, -1, 0, 2, -1, 0, 3, 1, -2, 1, 0, -1), (0, -2, 1, -3, 0, -1, 2, 0, -1, 2, -1, 1, 0, 1, -2, 3))",
        }

        taut_polys_with_cycles = {
            ("eLMkbcddddedde_2100", ((7, 7, 0, 0, -4, 3, -7, 0),)): [-1, -1, -1, 1, 1],
            ("iLLLQPcbeegefhhhhhhahahha_01110221", ((0, 0, 1, -1, -1, 0, -1, -1, 1, 0, 0, 0, 0, -1, 0, -1),)): [1, 1, 2],
            ("ivvPQQcfhghgfghfaaaaaaaaa_01122000", ((1, 1, 2, 0, -1, 2, 1, -3, 0, -1, 0, -2, -1, 0, 3, -2), (1, 1, 0, 2, -1, 0, -3, 1, 2, -1, -2, 0, 3, -2, -1, 0))): [-4, -1, -1, 1, 1],
        }

        # taut_polys_with_cycles = {
        #     ("eLMkbcddddedde_2100", ((7, 7, 0, 0, -4, 3, -7, 0),)): "a^14 - a^8 - a^7 - a^6 + 1",
        #     ("iLLLQPcbeegefhhhhhhahahha_01110221", ((0, 0, 1, -1, -1, 0, -1, -1, 1, 0, 0, 0, 0, -1, 0, -1),)): "a^2 + 2*a + 1",
        #     ("ivvPQQcfhghgfghfaaaaaaaaa_01122000", ((1, 1, 2, 0, -1, 2, 1, -3, 0, -1, 0, -2, -1, 0, 3, -2), (1, 1, 0, 2, -1, 0, -3, 1, 2, -1, -2, 0, 3, -2, -1, 0))): "a*b^2 - a^2 - 4*a*b - b^2 + a",
        # }


        taut_polys_image = {
            ('eLMkbcddddedde_2100', ((7, 8, -1, 0, -4, 4, -8, 0),)):[-1, -1, -1, 1, 1],
            ('ivvPQQcfhghgfghfaaaaaaaaa_01122000', ((1, 1, 2, 0, -1, 2, 1, -3, 0, -1, 0, -2, -1, 0, 3, -2),)):[-2, -2, -1, -1, 1, 1],
            ('ivvPQQcfhghgfghfaaaaaaaaa_01122000', ((1, 1, 2, 0, -1, 2, 1, -3, 0, -1, 0, -2, -1, 0, 3, -2), (1, 1, 0, 2, -1, 0, -3, 1, 2, -1, -2, 0, 3, -2, -1, 0))):[-4, -1, -1, 1, 1]
        }

        # taut_polys_image = {
        #     ('eLMkbcddddedde_2100', ((7, 8, -1, 0, -4, 4, -8, 0),)):"a^16 - a^9 - a^8 - a^7 + 1",
        #     ('ivvPQQcfhghgfghfaaaaaaaaa_01122000', ((1, 1, 2, 0, -1, 2, 1, -3, 0, -1, 0, -2, -1, 0, 3, -2),)):"a*b^2*c - 2*a*b*c - b^2*c - a^2 - 2*a*b + a",
        #     ('ivvPQQcfhghgfghfaaaaaaaaa_01122000', ((1, 1, 2, 0, -1, 2, 1, -3, 0, -1, 0, -2, -1, 0, 3, -2), (1, 1, 0, 2, -1, 0, -3, 1, 2, -1, -2, 0, 3, -2, -1, 0))):"a*b^2 - a^2 - 4*a*b - b^2 + a"
        # }

        alex_polys_with_cycles = {
            ("eLMkbcddddedde_2100",((7, 7, 0, 0, -4, 3, -7, 0),)): [-2, -1, -1, -1, 1, 1, 1, 2],
            ("iLLLQPcbeegefhhhhhhahahha_01110221", ((0, 0, 1, -1, -1, 0, -1, -1, 1, 0, 0, 0, 0, -1, 0, -1),)): [-3, -1, 1, 3],
            ("ivvPQQcfhghgfghfaaaaaaaaa_01122000", ((1, 1, 2, 0, -1, 2, 1, -3, 0, -1, 0, -2, -1, 0, 3, -2), (1, 1, 0, 2, -1, 0, -3, 1, 2, -1, -2, 0, 3, -2, -1, 0))): [-1, -1, 1, 1],
        }

        # alex_polys_with_cycles = {
        #     ("eLMkbcddddedde_2100",((7, 7, 0, 0, -4, 3, -7, 0),)): "a^15 - a^14 + a^9 - 2*a^8 + 2*a^7 - a^6 + a - 1",
        #     ("iLLLQPcbeegefhhhhhhahahha_01110221", ((0, 0, 1, -1, -1, 0, -1, -1, 1, 0, 0, 0, 0, -1, 0, -1),)): "3*a^3 - a^2 + a - 3",
        #     ("ivvPQQcfhghgfghfaaaaaaaaa_01122000", ((1, 1, 2, 0, -1, 2, 1, -3, 0, -1, 0, -2, -1, 0, 3, -2), (1, 1, 0, 2, -1, 0, -3, 1, 2, -1, -2, 0, 3, -2, -1, 0))): "a*b^2 - a^2 - b^2 + a",
        # }

    if sage_working:
        import taut_carried     
        print("testing boundary cycles")
        for sig, surface in boundary_cycles:
            surface_list = list(surface)
            cycles = taut_carried.boundary_cycles_from_surface(sig, surface_list)
            cycles = tuple(tuple(cycle) for cycle in cycles)
            assert cycles.__repr__() == boundary_cycles[(sig, surface)], sig

    if sage_working:
        print("testing taut with cycles")
        for sig, cycles in taut_polys_with_cycles:
            cycles_in = [list(cycle) for cycle in cycles]
            p = taut_polynomial.taut_polynomial_via_tree(sig, cycles_in)
            assert check_polynomial_coefficients(p, taut_polys_with_cycles[(sig, cycles)]), sig
            # assert p.__repr__() == taut_polys_with_cycles[(sig, cycles)]

    if sage_working:
        print("testing taut with images")
        for sig, cycles in taut_polys_image:
            cycles_in = [list(cycle) for cycle in cycles]
            p = taut_polynomial.taut_polynomial_image(sig, cycles_in)
            assert check_polynomial_coefficients(p, taut_polys_image[(sig, cycles)]), sig
            # assert p.__repr__() == taut_polys_image[(sig, cycles)]

    if sage_working:
        print("testing alex with cycles")
        for sig, cycles in alex_polys_with_cycles:
            cycles_in = [list(cycle) for cycle in cycles]
            p = taut_polynomial.taut_polynomial_via_tree(sig, cycles_in, mode = "alexander")
            assert check_polynomial_coefficients(p, alex_polys_with_cycles[(sig, cycles)]), sig
            # assert p.__repr__() == alex_polys_with_cycles[(sig, cycles)]

    if sage_working:
        import edge_orientability
        import taut_euler_class
        print("testing euler and edge orientability")
        for sig in random.sample(veering_isosigs[:3000], 3):
            # Theorem: If (tri, angle) is edge orientable then e = 0.
            assert not ( edge_orientability.is_edge_orientable(sig) and
                         (taut_euler_class.order_of_euler_class_wrapper(sig) == 2) ), sig

    if sage_working:
        # Theorem: If (tri, angle) is edge orientable then taut poly = alex poly.
        # taut_polynomial.taut_polynomial_via_tree(sig, mode = "alexander") ==
        #      taut_polynomial.taut_polynomial_via_tree(sig, mode = "taut")
        pass
            
    if sage_working:
        print("testing exotics")
        for sig in random.sample(veering_isosigs[:3000], 3):
            tri, angle = taut.isosig_to_tri_angle(sig)
            T = veering.veering_triangulation(tri, angle)
            is_eo = T.is_edge_orientable()
            for angle in T.exotic_angles():
                assert taut_polytope.taut_cone_homological_dim(tri, angle) == 0, sig
                assert is_eo == transverse_taut.is_transverse_taut(tri, angle), sig

    ### test for drill_midsurface_bdy: drill then fill, check you get the same manifold

    if sage_working:
        from sage.combinat.words.word_generators import words
        from sage.modules.free_module_integer import IntegerLattice
        from sage.modules.free_module import VectorSpace
        from sage.matrix.constructor import Matrix
        import z_charge
        import z2_taut
        import regina

        ZZ2 = ZZ.quotient(ZZ(2))

        sig_starts = ["b+-LR", "b++LR"]

        print("testing lattice for punc torus bundle")
        for i in range(3):
            for sig_start in sig_starts:
                sig = sig_start + str(words.RandomWord(8, 2, "LR"))  # 8 is a magic number
                M = snappy.Manifold(sig)
                tri = regina.Triangulation3(M)
                t, A = z_charge.sol_and_kernel(M)
                B = z_charge.leading_trailing_deformations(M)
                C = z2_taut.cohomology_loops(tri)

                AA = IntegerLattice(A)
                BB = IntegerLattice(B)
                assert AA == BB.saturation(), sig

                dim = 3*M.num_tetrahedra()
                V = VectorSpace(ZZ2, dim)
                AA = V.subspace(A)
                BB = V.subspace(B)
                CM = Matrix(ZZ2, C)
                CC = CM.right_kernel()
                assert AA.intersection(CC) == BB , sig
                ## so l-t defms are the part of the kernel that doesn't flip over

    if sage_working:
        print("testing charges for punc torus bundle")
        for i in range(3):
            for sig_start in sig_starts:
                sig = sig_start + str(words.RandomWord(8, 2, "LR"))  # 8 is a magic number
                M = snappy.Manifold(sig)
                assert z_charge.can_deal_with_reduced_angles(M), sig
    
    if sage_working:
        import carried_surface
        import mutation
        print("testing building carried surfaces and mutations")
        sigs_weights = [
            ['iLLLPQccdgefhhghqrqqssvof_02221000',  (0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0)], 
            ['jLLAvQQcedehihiihiinasmkutn_011220000', (2, 0, 1, 0, 0, 0, 1, 2, 0, 2, 0, 2, 1, 0, 0, 0, 1, 0)],
            ['jLLAvQQcedehihiihiinasmkutn_011220000', (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0)],
            ['jLLLMPQcdgfhfhiiihshassspiq_122201101', (0, 0, 4, 0, 4, 1, 0, 2, 2, 0, 1, 0, 0, 4, 0, 4, 0, 0)]
        ]
        strata = [
            ((1, 2), [2, 2]), 
            ((2, 4), [5, 5, 1, 1]),
            ((0, 3), [2, 0, 0]),
            ((6, 1), [22])
        ]
        orders_of_veering_symmetry_groups = [4, 2, 2, 2]
        
        for i in range(len(sigs_weights)):
            tri, angle = taut.isosig_to_tri_angle(sigs_weights[i][0])
            weights = sigs_weights[i][1]
            surface, edge_colours = carried_surface.build_surface(tri, angle, weights, return_edge_colours = True)
            assert strata[i] == carried_surface.stratum_from_weights_surface(weights, surface)
            veering_isoms = carried_surface.veering_symmetry_group(surface, edge_colours)
            assert len(veering_isoms) == orders_of_veering_symmetry_groups[i]
            isom = veering_isoms[1]
            mutation.mutate(tri, angle, weights, isom, quiet = True)
            if i == 0:
                assert tri.isoSig() == 'ivLLQQccfhfeghghwadiwadrv'
                #print('svof to wadrv passed')
            elif i == 1:
                assert tri.isoSig() == 'jvLLAQQdfghhfgiiijttmtltrcr'
                #print('smkutn to tltrcr passed')
            elif i == 2:
                assert tri.isoSig() == 'jLLMvQQcedehhiiihiikiwnmtxk'
                #print('smkutn to mtxk passed')
            elif i == 3:
                assert tri.isoSig() == 'jLLALMQcecdhggiiihqrwqwrafo'
                #print('spiq to rafo passed')
                
                        
    if sage_working:
        print("all tests depending on sage passed")