Ejemplo n.º 1
0
    def plot(self, polygon_label=True):
        r"""
        Returns a plot of the GraphicalPolygon.

        EXAMPLES::

            sage: from flatsurf import *
            sage: s = similarity_surfaces.example()
            sage: from flatsurf.graphical.surface import GraphicalSurface
            sage: gs = GraphicalSurface(s)
            sage: gs.graphical_polygon(0).set_fill_color("red")
            sage: gs.graphical_polygon(0).plot()
            Graphics object consisting of 5 graphics primitives
        """
        from sage.plot.point import point2d
        from sage.plot.polygon import polygon2d
        from sage.plot.graphics import Graphics
        from sage.plot.text import text

        p = polygon2d(self._v, **self.polygon_options())

        if self._label is not None and polygon_label:
            p += text(str(self._label), sum(self._v) / len(self._v), **self.polygon_label_options())

        if self._edge_labels:
            opt = self.edge_label_options()
            n = self.base_polygon().num_edges()
            for i in range(n):
                lab = str(i) if self._edge_labels is True else self._edge_labels[i]
                if lab:
                    e = self._v[(i + 1) % n] - self._v[i]
                    no = V((-e[1], e[0]))
                    p += text(lab, self._v[i] + 0.3 * e + 0.05 * no, **self.edge_label_options())

        return p
Ejemplo n.º 2
0
    def _new_plot(self, M, color=None):
        r"""
        INPUT:

        - ``M`` -- projection matrix
        - ``color`` -- string or None

        EXAMPLES::

            sage: from EkEkstar import kFace, GeoSub
            sage: sub = {1:[1,2], 2:[1,3], 3:[1]}
            sage: geosub = GeoSub(sub,2, dual=True)
            sage: M = geosub.projection()
            sage: _ = kFace((10,21,33), (1,2), dual=True)._new_plot(M)  # case C
        """
        if color is None:
            color = self._color
        L = self.new_proj(M)
        if self.face_dimension() == 1:
            return line(L, color=color, thickness=3)
        elif self.face_dimension() == 2:
            return polygon2d(L, color=color, thickness=.1, alpha=.8)
        else:
            raise NotImplementedError(
                "Plotting is implemented only for patches in two or three dimensions."
            )
Ejemplo n.º 3
0
    def plot(self):
        """
        Plot the lattice polygon.

        OUTPUT:

        A graphics object.

        EXAMPLES::

            sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL
            sage: P = LatticePolytope_PPL((1,0), (0,1), (0,0), (2,2))
            sage: P.plot()
            Graphics object consisting of 6 graphics primitives
            sage: LatticePolytope_PPL([0], [1]).plot()
            Graphics object consisting of 3 graphics primitives
            sage: LatticePolytope_PPL([0]).plot()
            Graphics object consisting of 2 graphics primitives
        """
        from sage.plot.point import point2d
        from sage.plot.polygon import polygon2d
        vertices = self.ordered_vertices()
        points = self.integral_points()
        if self.space_dimension() == 1:
            vertices = [vector(ZZ, (v[0], 0)) for v in vertices]
            points = [vector(ZZ, (p[0], 0)) for p in points]
        point_plot = sum(
            point2d(p, pointsize=100, color='red') for p in points)
        polygon_plot = polygon2d(vertices,
                                 alpha=0.2,
                                 color='green',
                                 zorder=-1,
                                 thickness=2)
        return polygon_plot + point_plot
Ejemplo n.º 4
0
    def plot(self):
        """
        Plot the lattice polygon.

        OUTPUT:

        A graphics object.

        EXAMPLES::

            sage: from sage.geometry.polyhedron.ppl_lattice_polytope import LatticePolytope_PPL
            sage: P = LatticePolytope_PPL((1,0), (0,1), (0,0), (2,2))
            sage: P.plot()
            Graphics object consisting of 6 graphics primitives
            sage: LatticePolytope_PPL([0], [1]).plot()
            Graphics object consisting of 3 graphics primitives
            sage: LatticePolytope_PPL([0]).plot()
            Graphics object consisting of 2 graphics primitives
        """
        from sage.plot.point import point2d
        from sage.plot.polygon import polygon2d
        vertices = self.ordered_vertices()
        points = self.integral_points()
        if self.space_dimension() == 1:
            vertices = [vector(ZZ, (v[0], 0)) for v in vertices]
            points = [vector(ZZ, (p[0], 0)) for p in points]
        point_plot = sum(point2d(p, pointsize=100, color='red')
                         for p in points)
        polygon_plot = polygon2d(vertices, alpha=0.2, color='green',
                                 zorder=-1, thickness=2)
        return polygon_plot + point_plot
Ejemplo n.º 5
0
    def plot(self, **options):
        r"""
        Plot this cylinder in coordinates used by a graphical surface. This
        plots this cylinder as a union of subpolygons. Only the intersections
        with polygons visible in the graphical surface are shown.

        Parameters other than `graphical_surface` are passed to `polygon2d`
        which is called to render the polygons.

        Parameters
        ----------
        graphical_surface : a GraphicalSurface
            If not provided or `None`, the plot method uses the default graphical
            surface for the surface.
        """
        if "graphical_surface" in options and options["graphical_surface"] is not None:
            gs = options["graphical_surface"]
            assert gs.get_surface() == self._s, "Graphical surface for the wrong surface."
            del options["graphical_surface"]
        else:
            gs = self._s.graphical_surface()
        plt = Graphics()
        for l,p in self.polygons():
            if gs.is_visible(l):
                gp = gs.graphical_polygon(l)
                t = gp.transformation()
                pp = t(p)
                poly = polygon2d(pp.vertices(), **options)
                plt += poly.plot()
        return plt
Ejemplo n.º 6
0
    def plot(self, **options):
        r"""
        Plot this cylinder in coordinates used by a graphical surface. This
        plots this cylinder as a union of subpolygons. Only the intersections
        with polygons visible in the graphical surface are shown.

        Parameters other than `graphical_surface` are passed to `polygon2d`
        which is called to render the polygons.

        Parameters
        ----------
        graphical_surface : a GraphicalSurface
            If not provided or `None`, the plot method uses the default graphical
            surface for the surface.
        """
        if "graphical_surface" in options and options[
                "graphical_surface"] is not None:
            gs = options["graphical_surface"]
            assert gs.get_surface(
            ) == self._s, "Graphical surface for the wrong surface."
            del options["graphical_surface"]
        else:
            gs = self._s.graphical_surface()
        plt = Graphics()
        for l, p in self.polygons():
            if gs.is_visible(l):
                gp = gs.graphical_polygon(l)
                t = gp.transformation()
                pp = t(p)
                poly = polygon2d(pp.vertices(), **options)
                plt += poly.plot()
        return plt
Ejemplo n.º 7
0
    def plot_towers(self, iterations, position=(0,0), colors=None):
        """
        Plot the towers of this interval exchange obtained from Rauzy induction.
        
        INPUT:
            
        - ``nb_iterations`` -- the number of steps of Rauzy induction
        
        - ``colors`` -- (optional) colors for the towers
        
        EXAMPLES::
            
            sage: from surface_dynamics.all import *
            
            sage: p = iet.Permutation('A B', 'B A')
            sage: T = iet.IntervalExchangeTransformation(p, [0.41510826, 0.58489174])
            sage: T.plot_towers(iterations=5)
            Graphics object consisting of 65 graphics primitives
        """
        px,py = map(float, position)

        T,_,towers = self.rauzy_move(iterations=iterations,data=True) 
        pi = T.permutation()
        A = pi.alphabet()
        lengths = map(float, T.lengths())

        if colors is None:
            from sage.plot.colors import rainbow
            colors = {a:z for a,z in zip(A, rainbow(len(A)))}

        from sage.plot.graphics import Graphics
        from sage.plot.line import line2d
        from sage.plot.polygon import polygon2d
        from sage.plot.text import text
        G = Graphics()
        x = px
        for letter in pi[0]:
            y = x + lengths[A.rank(letter)]
            tower = towers.image(letter)
            h = tower.length()
            G += line2d([(x,py),(x,py+h)], color='black')
            G += line2d([(y,py),(y,py+h)], color='black')
            for i,a in enumerate(tower):
                G += line2d([(x,py+i),(y,py+i)], color='black')
                G += polygon2d([(x,py+i),(y,py+i),(y,py+i+1),(x,py+i+1)], color=colors[a], alpha=0.4)
                G += text(a, ((x+y)/2, py+i+.5), color='darkgray')
            G += line2d([(x,py+h),(y,py+h)], color='black', linestyle='dashed')
            G += text(letter, ((x+y)/2, py+h+.5), color='black', fontsize='large')
            x = y
        x = px
        G += line2d([(px,py-.5),(px+sum(lengths),py-.5)], color='black')
        for letter in pi[1]:
            y = x + lengths[A.rank(letter)]
            G += line2d([(x,py-.7),(x,py-.3)], color='black')
            G += text(letter, ((x+y)/2, py-.5), color='black', fontsize='large')
            x = y
        G += line2d([(x,py-.7),(x,py-.3)], color='black')

        return G
Ejemplo n.º 8
0
    def plot_polygon(self, **options):
        r"""
        Returns only the filled polygon.

        Options are processed as in sage.plot.polygon.polygon2d except
        that by default axes=False.
        """
        if not "axes" in options:
            options["axes"] = False
        return polygon2d(self._v, **options)
Ejemplo n.º 9
0
    def plot_polygon(self, **options):
        r"""
        Returns only the filled polygon.

        Options are processed as in sage.plot.polygon.polygon2d except
        that by default axes=False.
        """
        if not "axes" in options:
            options["axes"] = False
        return polygon2d(self._v, **options)
Ejemplo n.º 10
0
 def plot(self, translation=None):
     r"""
     Plot the polygon with the origin at ``translation``.
     """
     from sage.plot.point import point2d
     from sage.plot.line import line2d
     from sage.plot.polygon import polygon2d
     from sage.modules.free_module import VectorSpace
     V = VectorSpace(RR,2)
     P = self.vertices(translation)
     return point2d(P, color='red') + line2d(P + (P[0],), color='orange') + polygon2d(P, alpha=0.3)
Ejemplo n.º 11
0
    def plot(self, **kwds):
        r"""
        Plot the initial triangulation associated to ``self``.

        INPUT:

        - ``radius`` - the radius of the disk; by default the length of
          the circle is the number of vertices
        - ``points_color`` - the color of the vertices; default 'black'
        - ``points_size`` - the size of the vertices; default 7
        - ``triangulation_color`` - the color of the arcs; default 'black'
        - ``triangulation_thickness`` - the thickness of the arcs; default 0.5
        - ``shading_color`` - the color of the shading used on neuter
          intervals; default 'lightgray'
        - ``reflections_color`` - the color of the reflection axes; default
          'blue'
        - ``reflections_thickness`` - the thickness of the reflection axes;
          default 1

        EXAMPLES::

            sage: Y = SineGordonYsystem('A',(6,4,3))
            sage: Y.plot()  # long time 2s
            Graphics object consisting of 219 graphics primitives
        """
        # Set up plotting options
        if 'radius' in kwds:
            radius = kwds['radius']
        else:
            radius = ceil(self.r() / (2 * pi))
        points_opts = {}
        if 'points_color' in kwds:
            points_opts['color'] = kwds['points_color']
        else:
            points_opts['color'] = 'black'
        if 'points_size' in kwds:
            points_opts['size'] = kwds['points_size']
        else:
            points_opts['size'] = 7
        triangulation_opts = {}
        if 'triangulation_color' in kwds:
            triangulation_opts['color'] = kwds['triangulation_color']
        else:
            triangulation_opts['color'] = 'black'
        if 'triangulation_thickness' in kwds:
            triangulation_opts['thickness'] = kwds['triangulation_thickness']
        else:
            triangulation_opts['thickness'] = 0.5
        shading_opts = {}
        if 'shading_color' in kwds:
            shading_opts['color'] = kwds['shading_color']
        else:
            shading_opts['color'] = 'lightgray'
        reflections_opts = {}
        if 'reflections_color' in kwds:
            reflections_opts['color'] = kwds['reflections_color']
        else:
            reflections_opts['color'] = 'blue'
        if 'reflections_thickness' in kwds:
            reflections_opts['thickness'] = kwds['reflections_thickness']
        else:
            reflections_opts['thickness'] = 1
        # Helper functions

        def triangle(x):
            (a, b) = sorted(x[:2])
            for p in self.vertices():
                if (p, a) in self.triangulation() or (a, p) in self.triangulation():
                    if (p, b) in self.triangulation() or (b, p) in self.triangulation():
                        if p < a or p > b:
                            return sorted((a, b, p))

        def plot_arc(radius, p, q, **opts):
            # TODO: THIS SHOULD USE THE EXISTING PLOT OF ARCS!
            # plot the arc from p to q differently depending on the type of self
            p = ZZ(p)
            q = ZZ(q)
            t = var('t')
            if p - q in [1, -1]:
                def f(t):
                    return (radius * cos(t), radius * sin(t))
                (p, q) = sorted([p, q])
                angle_p = vertex_to_angle(p)
                angle_q = vertex_to_angle(q)
                return parametric_plot(f(t), (t, angle_q, angle_p), **opts)
            if self.type() == 'A':
                angle_p = vertex_to_angle(p)
                angle_q = vertex_to_angle(q)
                if angle_p < angle_q:
                    angle_p += 2 * pi
                internal_angle = angle_p - angle_q
                if internal_angle > pi:
                    (angle_p, angle_q) = (angle_q + 2 * pi, angle_p)
                    internal_angle = angle_p - angle_q
                angle_center = (angle_p+angle_q) / 2
                hypotenuse = radius / cos(internal_angle / 2)
                radius_arc = hypotenuse * sin(internal_angle / 2)
                center = (hypotenuse * cos(angle_center),
                          hypotenuse * sin(angle_center))
                center_angle_p = angle_p + pi / 2
                center_angle_q = angle_q + 3 * pi / 2

                def f(t):
                    return (radius_arc * cos(t) + center[0],
                            radius_arc * sin(t) + center[1])
                return parametric_plot(f(t), (t, center_angle_p,
                                              center_angle_q), **opts)
            elif self.type() == 'D':
                if p >= q:
                    q += self.r()
                px = -2 * pi * p / self.r() + pi / 2
                qx = -2 * pi * q / self.r() + pi / 2
                arc_radius = (px - qx) / 2
                arc_center = qx + arc_radius

                def f(t):
                    return exp(I * ((cos(t) + I * sin(t)) *
                                    arc_radius + arc_center)) * radius
                return parametric_plot((real_part(f(t)), imag_part(f(t))),
                                       (t, 0, pi), **opts)

        def vertex_to_angle(v):
            # v==0 corresponds to pi/2
            return -2 * pi * RR(v) / self.r() + 5 * pi / 2

        # Begin plotting
        P = Graphics()
        # Shade neuter intervals
        neuter_intervals = [x for x in flatten(self.intervals()[:-1],
                                               max_level=1)
                            if x[2] in ["NR", "NL"]]
        shaded_triangles = map(triangle, neuter_intervals)
        for (p, q, r) in shaded_triangles:
            points = list(plot_arc(radius, p, q)[0])
            points += list(plot_arc(radius, q, r)[0])
            points += list(reversed(plot_arc(radius, p, r)[0]))
            P += polygon2d(points, **shading_opts)
        # Disk boundary
        P += circle((0, 0), radius, **triangulation_opts)
        # Triangulation
        for (p, q) in self.triangulation():
            P += plot_arc(radius, p, q, **triangulation_opts)
        if self.type() == 'D':
            s = radius / 50.0
            P += polygon2d([(s, 5 * s), (s, 7 * s),
                            (3 * s, 5 * s), (3 * s, 7 * s)],
                           color=triangulation_opts['color'])
            P += bezier_path([[(0, 0), (2 * s, 1 * s), (2 * s, 6 * s)],
                              [(2 * s, 10 * s), (s, 20 * s)],
                              [(0, 30 * s), (0, radius)]],
                             **triangulation_opts)
            P += bezier_path([[(0, 0), (-2 * s, 1 * s), (-2 * s, 6 * s)],
                              [(-2 * s, 10 * s), (-s, 20 * s)],
                              [(0, 30 * s), (0, radius)]],
                             **triangulation_opts)
            P += point((0, 0), zorder=len(P), **points_opts)
        # Vertices
        v_points = {x: (radius * cos(vertex_to_angle(x)),
                        radius * sin(vertex_to_angle(x)))
                    for x in self.vertices()}
        for v in v_points:
            P += point(v_points[v], zorder=len(P), **points_opts)
        # Reflection axes
        P += line([(0, 1.1 * radius), (0, -1.1 * radius)],
                  zorder=len(P), **reflections_opts)
        axis_angle = vertex_to_angle(-0.5 * (self.rk() + (1, 1))[1])
        (a, b) = (1.1 * radius * cos(axis_angle),
                  1.1 * radius * sin(axis_angle))
        P += line([(a, b), (-a, -b)], zorder=len(P), **reflections_opts)
        # Wrap up
        P.set_aspect_ratio(1)
        P.axes(False)
        return P
Ejemplo n.º 12
0
    def plot(self, **kwds):
        r"""
        Plot the initial triangulation associated to ``self``.

        INPUT:

        - ``radius`` - the radius of the disk; by default the length of
          the circle is the number of vertices
        - ``points_color`` - the color of the vertices; default 'black'
        - ``points_size`` - the size of the vertices; default 7
        - ``triangulation_color`` - the color of the arcs; default 'black'
        - ``triangulation_thickness`` - the thickness of the arcs; default 0.5
        - ``shading_color`` - the color of the shading used on neuter
          intervals; default 'lightgray'
        - ``reflections_color`` - the color of the reflection axes; default
          'blue'
        - ``reflections_thickness`` - the thickness of the reflection axes;
          default 1

        EXAMPLES::

            sage: Y = SineGordonYsystem('A',(6,4,3));
            sage: Y.plot()      # not tested
        """
        # Set up plotting options
        if 'radius' in kwds:
            radius = kwds['radius']
        else:
            radius = ceil(self.r() / (2 * pi))
        points_opts = {}
        if 'points_color' in kwds:
            points_opts['color'] = kwds['points_color']
        else:
            points_opts['color'] = 'black'
        if 'points_size' in kwds:
            points_opts['size'] = kwds['points_size']
        else:
            points_opts['size'] = 7
        triangulation_opts = {}
        if 'triangulation_color' in kwds:
            triangulation_opts['color'] = kwds['triangulation_color']
        else:
            triangulation_opts['color'] = 'black'
        if 'triangulation_thickness' in kwds:
            triangulation_opts['thickness'] = kwds['triangulation_thickness']
        else:
            triangulation_opts['thickness'] = 0.5
        shading_opts = {}
        if 'shading_color' in kwds:
            shading_opts['color'] = kwds['shading_color']
        else:
            shading_opts['color'] = 'lightgray'
        reflections_opts = {}
        if 'reflections_color' in kwds:
            reflections_opts['color'] = kwds['reflections_color']
        else:
            reflections_opts['color'] = 'blue'
        if 'reflections_thickness' in kwds:
            reflections_opts['thickness'] = kwds['reflections_thickness']
        else:
            reflections_opts['thickness'] = 1
        # Helper functions

        def triangle(x):
            (a, b) = sorted(x[:2])
            for p in self.vertices():
                if (p, a) in self.triangulation() or (a, p) in self.triangulation():
                    if (p, b) in self.triangulation() or (b, p) in self.triangulation():
                        if p < a or p > b:
                            return sorted((a, b, p))

        def plot_arc(radius, p, q, **opts):
            # plot the arc from p to q differently depending on the type of self
            p = ZZ(p)
            q = ZZ(q)
            t = var('t')
            if p - q in [1, -1]:
                def f(t):
                    return (radius * cos(t), radius * sin(t))
                (p, q) = sorted([p, q])
                angle_p = vertex_to_angle(p)
                angle_q = vertex_to_angle(q)
                return parametric_plot(f(t), (t, angle_q, angle_p), **opts)
            if self.type() == 'A':
                angle_p = vertex_to_angle(p)
                angle_q = vertex_to_angle(q)
                if angle_p < angle_q:
                    angle_p += 2 * pi
                internal_angle = angle_p - angle_q
                if internal_angle > pi:
                    (angle_p, angle_q) = (angle_q + 2 * pi, angle_p)
                    internal_angle = angle_p - angle_q
                angle_center = (angle_p+angle_q) / 2
                hypotenuse = radius / cos(internal_angle / 2)
                radius_arc = hypotenuse * sin(internal_angle / 2)
                center = (hypotenuse * cos(angle_center),
                          hypotenuse * sin(angle_center))
                center_angle_p = angle_p + pi / 2
                center_angle_q = angle_q + 3 * pi / 2

                def f(t):
                    return (radius_arc * cos(t) + center[0],
                            radius_arc * sin(t) + center[1])
                return parametric_plot(f(t), (t, center_angle_p,
                                              center_angle_q), **opts)
            elif self.type() == 'D':
                if p >= q:
                    q += self.r()
                px = -2 * pi * p / self.r() + pi / 2
                qx = -2 * pi * q / self.r() + pi / 2
                arc_radius = (px - qx) / 2
                arc_center = qx + arc_radius

                def f(t):
                    return exp(I * ((cos(t) + I * sin(t)) *
                                    arc_radius + arc_center)) * radius
                return parametric_plot((real_part(f(t)), imag_part(f(t))),
                                       (t, 0, pi), **opts)

        def vertex_to_angle(v):
            # v==0 corresponds to pi/2
            return -2 * pi * RR(v) / self.r() + 5 * pi / 2

        # Begin plotting
        P = Graphics()
        # Shade neuter intervals
        neuter_intervals = [x for x in flatten(self.intervals()[:-1],
                                               max_level=1)
                            if x[2] in ["NR", "NL"]]
        shaded_triangles = map(triangle, neuter_intervals)
        for (p, q, r) in shaded_triangles:
            points = list(plot_arc(radius, p, q)[0])
            points += list(plot_arc(radius, q, r)[0])
            points += list(reversed(plot_arc(radius, p, r)[0]))
            P += polygon2d(points, **shading_opts)
        # Disk boundary
        P += circle((0, 0), radius, **triangulation_opts)
        # Triangulation
        for (p, q) in self.triangulation():
            P += plot_arc(radius, p, q, **triangulation_opts)
        if self.type() == 'D':
            s = radius / 50.0
            P += polygon2d([(s, 5 * s), (s, 7 * s),
                            (3 * s, 5 * s), (3 * s, 7 * s)],
                           color=triangulation_opts['color'])
            P += bezier_path([[(0, 0), (2 * s, 1 * s), (2 * s, 6 * s)],
                              [(2 * s, 10 * s), (s, 20 * s)],
                              [(0, 30 * s), (0, radius)]],
                             **triangulation_opts)
            P += bezier_path([[(0, 0), (-2 * s, 1 * s), (-2 * s, 6 * s)],
                              [(-2 * s, 10 * s), (-s, 20 * s)],
                              [(0, 30 * s), (0, radius)]],
                             **triangulation_opts)
            P += point((0, 0), zorder=len(P), **points_opts)
        # Vertices
        v_points = {x: (radius * cos(vertex_to_angle(x)),
                        radius * sin(vertex_to_angle(x)))
                    for x in self.vertices()}
        for v in v_points:
            P += point(v_points[v], zorder=len(P), **points_opts)
        # Reflection axes
        P += line([(0, 1.1 * radius), (0, -1.1 * radius)],
                  zorder=len(P), **reflections_opts)
        axis_angle = vertex_to_angle(-0.5 * (self.rk() + (1, 1))[1])
        (a, b) = (1.1 * radius * cos(axis_angle),
                  1.1 * radius * sin(axis_angle))
        P += line([(a, b), (-a, -b)], zorder=len(P), **reflections_opts)
        # Wrap up
        P.set_aspect_ratio(1)
        P.axes(False)
        return P
Ejemplo n.º 13
0
    def _plot(self, geosub, color=None):
        r"""
        EXAMPLES::

            sage: from EkEkstar import kFace, GeoSub
            sage: sub = {1:[1,2], 2:[1,3], 3:[1]}
            sage: geosub = GeoSub(sub,2, dual=True)
            sage: _ = kFace((10,21,33), (1,))._plot(geosub)              # case A
            sage: _ = kFace((10,21,33), (1,2), dual=True)._plot(geosub)  # case C
            sage: _ = kFace((10,21,33), (1,), dual=True)._plot(geosub)   # case E

        ::

            sage: sub = {1: [1, 3, 2, 3], 2: [2, 3], 3: [3, 2, 3, 1, 3, 2, 3]}
            sage: geosub = GeoSub(sub, 2, dual=True)
            sage: _ = kFace((10,21,33), (1,2), dual=True)._plot(geosub)  # case B

        ::

            sage: sub = {1:[1,2,3,3,3,3], 2:[1,3], 3:[1]}
            sage: geosub = GeoSub(sub,2, dual=True)
            sage: _ = kFace((0,0,0),(1,2), dual=True)._plot(geosub)      # case A
        """
        v = self.vector()
        t = self.type()
        if color != None:
            col = color
        else:
            col = self._color
        G = Graphics()

        K = geosub.field()
        b = K.gen()

        num = geosub._sigma_dict.keys()

        if self.is_dual():
            h = list(set(num) - set(t))
            B = b
            vec = geosub.dominant_left_eigenvector()
            emb = geosub.contracting_eigenvalues_indices()
        else:
            h = list(t)
            B = b**(-1)  # TODO: this seems useless (why?)
            vec = -geosub.dominant_left_eigenvector()
            emb = geosub.dilating_eigenvalues_indices()

        el = v * vec
        iter = 0

        conjugates = geosub.complex_embeddings()

        if len(h) == 1:
            if conjugates[emb[0]].is_real() == True:
                bp = zero_vector(CC, len(emb))
                for i in range(len(emb)):
                    bp[i] = K(el).complex_embeddings()[emb[i]]
                bp1 = zero_vector(CC, len(emb))
                for i in range(len(emb)):
                    bp1[i] = K(
                        (el + vec[h[0] - 1])).complex_embeddings()[emb[i]]
                if len(emb) == 1:
                    return line([bp[0], bp1[0]], color=col, thickness=3)
                else:
                    return line([bp, bp1], color=col, thickness=3)
            else:
                bp = K(el).complex_embeddings()[emb[0]]
                bp1 = K((el + vec[h[0] - 1])).complex_embeddings()[emb[0]]
                return line([bp, bp1], color=col, thickness=3)
        elif len(h) == 2:
            if conjugates[emb[0]].is_real() == True:
                bp = (K(el).complex_embeddings()[emb[0]],
                      K(el).complex_embeddings()[emb[1]])
                bp1 = (K(el + vec[h[0] - 1]).complex_embeddings()[emb[0]],
                       K(el + vec[h[0] - 1]).complex_embeddings()[emb[1]])
                bp2 = (K(el + vec[h[0] - 1] +
                         vec[h[1] - 1]).complex_embeddings()[emb[0]],
                       K(el + vec[h[0] - 1] +
                         vec[h[1] - 1]).complex_embeddings()[emb[1]])
                bp3 = (K(el + vec[h[1] - 1]).complex_embeddings()[emb[0]],
                       K(el + vec[h[1] - 1]).complex_embeddings()[emb[1]])
                return polygon2d([bp, bp1, bp2, bp3],
                                 color=col,
                                 thickness=.1,
                                 alpha=0.8)
            else:
                bp = K(el).complex_embeddings()[emb[0]]
                bp1 = K(el + vec[h[0] - 1]).complex_embeddings()[emb[0]]
                bp2 = K(el + vec[h[0] - 1] +
                        vec[h[1] - 1]).complex_embeddings()[emb[0]]
                bp3 = K(el + vec[h[1] - 1]).complex_embeddings()[emb[0]]
                return polygon2d([[bp[0], bp[1]], [bp1[0], bp1[1]],
                                  [bp2[0], bp2[1]], [bp3[0], bp3[1]]],
                                 color=col,
                                 thickness=.1,
                                 alpha=0.8)

        else:
            raise NotImplementedError(
                "Plotting is implemented only for patches in two or three dimensions."
            )
        return G
Ejemplo n.º 14
0
    def plot_towers(self, iterations, position=(0, 0), colors=None):
        """
        Plot the towers of this interval exchange obtained from Rauzy induction.

        INPUT:

        - ``nb_iterations`` -- the number of steps of Rauzy induction

        - ``colors`` -- (optional) colors for the towers

        EXAMPLES::

            sage: from surface_dynamics.all import *

            sage: p = iet.Permutation('A B', 'B A')
            sage: T = iet.IntervalExchangeTransformation(p, [0.41510826, 0.58489174])
            sage: T.plot_towers(iterations=5)   # not tested (problem with matplotlib font cache)
            Graphics object consisting of 65 graphics primitives
        """
        px, py = map(float, position)

        T, _, towers = self.rauzy_move(iterations=iterations, data=True)
        pi = T.permutation()
        A = pi.alphabet()
        lengths = map(float, T.lengths())

        if colors is None:
            from sage.plot.colors import rainbow
            colors = {a: z for a, z in zip(A, rainbow(len(A)))}

        from sage.plot.graphics import Graphics
        from sage.plot.line import line2d
        from sage.plot.polygon import polygon2d
        from sage.plot.text import text
        G = Graphics()
        x = px
        for letter in pi[0]:
            y = x + lengths[A.rank(letter)]
            tower = towers.image(letter)
            h = tower.length()
            G += line2d([(x, py), (x, py + h)], color='black')
            G += line2d([(y, py), (y, py + h)], color='black')
            for i, a in enumerate(tower):
                G += line2d([(x, py + i), (y, py + i)], color='black')
                G += polygon2d([(x, py + i), (y, py + i), (y, py + i + 1),
                                (x, py + i + 1)],
                               color=colors[a],
                               alpha=0.4)
                G += text(a, ((x + y) / 2, py + i + .5), color='darkgray')
            G += line2d([(x, py + h), (y, py + h)],
                        color='black',
                        linestyle='dashed')
            G += text(letter, ((x + y) / 2, py + h + .5),
                      color='black',
                      fontsize='large')
            x = y
        x = px
        G += line2d([(px, py - .5), (px + sum(lengths), py - .5)],
                    color='black')
        for letter in pi[1]:
            y = x + lengths[A.rank(letter)]
            G += line2d([(x, py - .7), (x, py - .3)], color='black')
            G += text(letter, ((x + y) / 2, py - .5),
                      color='black',
                      fontsize='large')
            x = y
        G += line2d([(x, py - .7), (x, py - .3)], color='black')

        return G