Ejemplo n.º 1
0
    def brown_invariant(self):
        r"""
        Return the Brown invariant of this torsion quadratic form.

        Let `(D,q)` be a torsion quadratic module with values in `\QQ / 2 \ZZ`.
        The Brown invariant `Br(D,q) \in \Zmod{8}` is defined by the equation

        .. MATH::

            \exp \left( \frac{2 \pi i }{8} Br(q)\right) =
            \frac{1}{\sqrt{D}} \sum_{x \in D} \exp(i \pi q(x)).

        The Brown invariant is additive with respect to direct sums of
        torsion quadratic modules.

        OUTPUT:

        - an element of `\Zmod{8}`

        EXAMPLES::

            sage: L = IntegralLattice("D4")
            sage: D = L.discriminant_group()
            sage: D.brown_invariant()
            4

        We require the quadratic form to be defined modulo `2 \ZZ`::

            sage: from sage.modules.torsion_quadratic_module import TorsionQuadraticModule
            sage: V = FreeQuadraticModule(ZZ,3,matrix.identity(3))
            sage: T = TorsionQuadraticModule((1/10)*V, V)
            sage: T.brown_invariant()
            Traceback (most recent call last):
            ...
            ValueError: the torsion quadratic form must have values in QQ / 2 ZZ
        """
        if self._modulus_qf != 2:
            raise ValueError("the torsion quadratic form must have values in "
                             "QQ / 2 ZZ")
        from sage.quadratic_forms.genera.normal_form import collect_small_blocks
        brown = IntegerModRing(8).zero()
        for p in self.annihilator().gen().prime_divisors():
            q = self.primary_part(p).normal_form()
            q = q.gram_matrix_quadratic()
            L = collect_small_blocks(q)
            for qi in L:
                brown += _brown_indecomposable(qi, p)
        return brown
    def brown_invariant(self):
        r"""
        Return the Brown invariant of this torsion quadratic form.

        Let `(D,q)` be a torsion quadratic module with values in `\QQ / 2 \ZZ`.
        The Brown invariant `Br(D,q) \in \Zmod{8}` is defined by the equation

        .. MATH::

            \exp \left( \frac{2 \pi i }{8} Br(q)\right) =
            \frac{1}{\sqrt{D}} \sum_{x \in D} \exp(i \pi q(x)).

        The Brown invariant is additive with respect to direct sums of
        torsion quadratic modules.

        OUTPUT:

        - an element of `\Zmod{8}`

        EXAMPLES::

            sage: L = IntegralLattice("D4")
            sage: D = L.discriminant_group()
            sage: D.brown_invariant()
            4

        We require the quadratic form to be defined modulo `2 \ZZ`::

            sage: from sage.modules.torsion_quadratic_module import TorsionQuadraticModule
            sage: V = FreeQuadraticModule(ZZ,3,matrix.identity(3))
            sage: T = TorsionQuadraticModule((1/10)*V, V)
            sage: T.brown_invariant()
            Traceback (most recent call last):
            ...
            ValueError: The torsion quadratic form must have values in\QQ / 2\ZZ
        """
        if self._modulus_qf != 2:
            raise ValueError("The torsion quadratic form must have values in"
                            "\QQ / 2\ZZ")
        from sage.quadratic_forms.genera.normal_form import collect_small_blocks
        brown = IntegerModRing(8).zero()
        for p in self.annihilator().gen().prime_divisors():
            q = self.primary_part(p).normal_form()
            q = q.gram_matrix_quadratic()
            L = collect_small_blocks(q)
            for qi in L:
                brown += _brown_indecomposable(qi,p)
        return brown