Ejemplo n.º 1
0
    def monomial_lcm(self, f, g):
        """
        LCM for monomials. Coefficients are ignored.

        INPUT:


        -  ``f`` - monomial

        -  ``g`` - monomial


        EXAMPLE::

            sage: from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_polydict_domain
            sage: P.<x,y,z>=MPolynomialRing_polydict_domain(QQ,3, order='degrevlex')
            sage: P.monomial_lcm(3/2*x*y,x)
            x*y

        TESTS::

            sage: from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_polydict_domain
            sage: R.<x,y,z>=MPolynomialRing_polydict_domain(QQ,3, order='degrevlex')
            sage: P.<x,y,z>=MPolynomialRing_polydict_domain(QQ,3, order='degrevlex')
            sage: P.monomial_lcm(x*y,R.gen())
            x*y

        ::

            sage: P.monomial_lcm(P(3/2),P(2/3))
            1

        ::

            sage: P.monomial_lcm(x,P(1))
            x
        """
        one = self.base_ring()(1)

        f=f.dict().keys()[0]
        g=g.dict().keys()[0]


        length = len(f)

        res = {}

        for i in f.common_nonzero_positions(g):
            res[i] = max([f[i],g[i]])

        res =  self(PolyDict({ETuple(res,length):one},\
                            force_int_exponents=False,force_etuples=False))
        return res
Ejemplo n.º 2
0
    def monomial_all_divisors(self, t):
        r"""
        Return a list of all monomials that divide ``t``, coefficients are
        ignored.

        INPUT:

        -  ``t`` - a monomial.

        OUTPUT: a list of monomials.

        EXAMPLES::

            sage: from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_polydict_domain
            sage: P.<x,y,z> = MPolynomialRing_polydict_domain(QQ,3, order='degrevlex')
            sage: P.monomial_all_divisors(x^2*z^3)
            [x, x^2, z, x*z, x^2*z, z^2, x*z^2, x^2*z^2, z^3, x*z^3, x^2*z^3]

        ALGORITHM: addwithcarry idea by Toon Segers
        """
        def addwithcarry(tempvector, maxvector, pos):
            if tempvector[pos] < maxvector[pos]:
                tempvector[pos] += 1
            else:
                tempvector[pos] = 0
                tempvector = addwithcarry(tempvector, maxvector, pos + 1)
            return tempvector

        if not t.is_monomial():
            raise TypeError("only monomials are supported")

        R = self
        one = self.base_ring().one()
        M = list()

        v, = t.dict()
        maxvector = list(v)

        tempvector = [
            0,
        ] * len(maxvector)

        pos = 0

        while tempvector != maxvector:
            tempvector = addwithcarry(list(tempvector), maxvector, pos)
            M.append(
                R(
                    PolyDict({ETuple(tempvector): one},
                             force_int_exponents=False,
                             force_etuples=False)))
        return M
Ejemplo n.º 3
0
    def monomial_quotient(self, f, g, coeff=False):
        r"""
        Return ``f/g``, where both ``f`` and ``g`` are treated as monomials.

        Coefficients are ignored by default.

        INPUT:

        -  ``f`` - monomial.

        -  ``g`` - monomial.

        -  ``coeff`` - divide coefficients as well (default:
           False).

        OUTPUT: monomial.

        EXAMPLE::

            sage: from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_polydict_domain
            sage: P.<x,y,z> = MPolynomialRing_polydict_domain(QQ, 3, order='degrevlex')
            sage: P.monomial_quotient(3/2*x*y, x)
            y

        ::

            sage: P.monomial_quotient(3/2*x*y, 2*x, coeff=True)
            3/4*y

        TESTS::

            sage: from sage.rings.polynomial.multi_polynomial_ring import MPolynomialRing_polydict_domain
            sage: R.<x,y,z> = MPolynomialRing_polydict_domain(QQ,3, order='degrevlex')
            sage: P.<x,y,z> = MPolynomialRing_polydict_domain(QQ,3, order='degrevlex')
            sage: P.monomial_quotient(x*y, x)
            y

        ::

            sage: P.monomial_quotient(x*y, R.gen())
            y

        ::

            sage: P.monomial_quotient(P(0), P(1))
            0

        ::

            sage: P.monomial_quotient(P(1), P(0))
            Traceback (most recent call last):
            ...
            ZeroDivisionError

        ::

            sage: P.monomial_quotient(P(3/2), P(2/3), coeff=True)
            9/4

        ::

            sage: P.monomial_quotient(x, y) # Note the wrong result
            x*y^-1

        ::

            sage: P.monomial_quotient(x, P(1))
            x

        .. note::

           Assumes that the head term of f is a multiple of the head
           term of g and return the multiplicant m. If this rule is
           violated, funny things may happen.
        """
        from sage.rings.polynomial.multi_polynomial_element import MPolynomial_polydict

        if not f:
            return f
        if not g:
            raise ZeroDivisionError

        if not coeff:
            coeff = self.base_ring()(1)
        else:
            coeff = self.base_ring()(f.dict().values()[0] /
                                     g.dict().values()[0])

        f = f.dict().keys()[0]
        g = g.dict().keys()[0]

        res = f.esub(g)

        return MPolynomial_polydict(self, PolyDict({res:coeff},\
                                                   force_int_exponents=False, \
                                                   force_etuples=False))