Ejemplo n.º 1
0
def WeierstrassMap_P1xP1(polynomial, variables=None):
    r"""
    Map an anticanonical hypersurface in
    `\mathbb{P}^1 \times \mathbb{P}^1` into Weierstrass form.

    Input/output is the same as :func:`WeierstrassMap`, except that
    the input polynomial must be a standard anticanonical hypersurface
    in the toric surface `\mathbb{P}^1 \times \mathbb{P}^1`:

    EXAMPLES::

        sage: from sage.schemes.toric.weierstrass_covering import WeierstrassMap_P1xP1
        sage: from sage.schemes.toric.weierstrass import WeierstrassForm_P1xP1
        sage: R.<x0,x1,y0,y1,a>= QQ[]
        sage: biquadric = ( x0^2*y0^2 + x1^2*y0^2 + x0^2*y1^2 + x1^2*y1^2 +
        ....:     a * x0*x1*y0*y1*5 )
        sage: f, g = WeierstrassForm_P1xP1(biquadric, [x0, x1, y0, y1]);  (f,g)
        (-625/48*a^4 + 25/3*a^2 - 16/3, 15625/864*a^6 - 625/36*a^4 - 100/9*a^2 + 128/27)
        sage: X, Y, Z = WeierstrassMap_P1xP1(biquadric, [x0, x1, y0, y1])
        sage: (-Y^2 + X^3 + f*X*Z^4 + g*Z^6).reduce(R.ideal(biquadric))
        0

        sage: R = PolynomialRing(QQ, 'x,y,s,t', order='lex')
        sage: R.inject_variables()
        Defining x, y, s, t
        sage: equation = ( s^2*(x^2+2*x*y+3*y^2) + s*t*(4*x^2+5*x*y+6*y^2)
        ....:              + t^2*(7*x^2+8*x*y+9*y^2) )
        sage: X, Y, Z = WeierstrassMap_P1xP1(equation, [x,y,s,t])
        sage: f, g = WeierstrassForm_P1xP1(equation, variables=[x,y,s,t])
        sage: (-Y^2 + X^3 + f*X*Z^4 + g*Z^6).reduce(R.ideal(equation))
        0

        sage: R = PolynomialRing(QQ, 'x,s', order='lex')
        sage: R.inject_variables()
        Defining x, s
        sage: equation = s^2*(x^2+2*x+3) + s*(4*x^2+5*x+6) + (7*x^2+8*x+9)
        sage: X, Y, Z = WeierstrassMap_P1xP1(equation)
        sage: f, g = WeierstrassForm_P1xP1(equation)
        sage: (-Y^2 + X^3 + f*X*Z^4 + g*Z^6).reduce(R.ideal(equation))
        0
    """
    x,y,s,t = _check_polynomial_P1xP1(polynomial, variables)
    a00 = polynomial.coefficient({s:2})
    V = polynomial.coefficient({s:1})
    U = - _partial_discriminant(polynomial, s, t) / 4
    Q = invariant_theory.binary_quartic(U, x, y)
    g = Q.g_covariant()
    h = Q.h_covariant()
    if t is None:
        t = 1
    return ( 4*g*t**2, 4*h*t**3, (a00*s+V/2) )
Ejemplo n.º 2
0
def WeierstrassMap_P1xP1(polynomial, variables=None):
    r"""
    Map an anticanonical hypersurface in
    `\mathbb{P}^1 \times \mathbb{P}^1` into Weierstrass form.

    Input/output is the same as :func:`WeierstrassMap`, except that
    the input polynomial must be a standard anticanonical hypersurface
    in the toric surface `\mathbb{P}^1 \times \mathbb{P}^1`:

    EXAMPLES::

        sage: from sage.schemes.toric.weierstrass_covering import WeierstrassMap_P1xP1
        sage: from sage.schemes.toric.weierstrass import WeierstrassForm_P1xP1
        sage: R.<x0,x1,y0,y1,a>= QQ[]
        sage: biquadric = ( x0^2*y0^2 + x1^2*y0^2 + x0^2*y1^2 + x1^2*y1^2 +
        ....:     a * x0*x1*y0*y1*5 )
        sage: f, g = WeierstrassForm_P1xP1(biquadric, [x0, x1, y0, y1]);  (f,g)
        (-625/48*a^4 + 25/3*a^2 - 16/3, 15625/864*a^6 - 625/36*a^4 - 100/9*a^2 + 128/27)
        sage: X, Y, Z = WeierstrassMap_P1xP1(biquadric, [x0, x1, y0, y1])
        sage: (-Y^2 + X^3 + f*X*Z^4 + g*Z^6).reduce(R.ideal(biquadric))
        0

        sage: R = PolynomialRing(QQ, 'x,y,s,t', order='lex')
        sage: R.inject_variables()
        Defining x, y, s, t
        sage: equation = ( s^2*(x^2+2*x*y+3*y^2) + s*t*(4*x^2+5*x*y+6*y^2)
        ....:              + t^2*(7*x^2+8*x*y+9*y^2) )
        sage: X, Y, Z = WeierstrassMap_P1xP1(equation, [x,y,s,t])
        sage: f, g = WeierstrassForm_P1xP1(equation, variables=[x,y,s,t])
        sage: (-Y^2 + X^3 + f*X*Z^4 + g*Z^6).reduce(R.ideal(equation))
        0

        sage: R = PolynomialRing(QQ, 'x,s', order='lex')
        sage: R.inject_variables()
        Defining x, s
        sage: equation = s^2*(x^2+2*x+3) + s*(4*x^2+5*x+6) + (7*x^2+8*x+9)
        sage: X, Y, Z = WeierstrassMap_P1xP1(equation)
        sage: f, g = WeierstrassForm_P1xP1(equation)
        sage: (-Y^2 + X^3 + f*X*Z^4 + g*Z^6).reduce(R.ideal(equation))
        0
    """
    x, y, s, t = _check_polynomial_P1xP1(polynomial, variables)
    a00 = polynomial.coefficient({s: 2})
    V = polynomial.coefficient({s: 1})
    U = -_partial_discriminant(polynomial, s, t) / 4
    Q = invariant_theory.binary_quartic(U, x, y)
    g = Q.g_covariant()
    h = Q.h_covariant()
    if t is None:
        t = 1
    return (4 * g * t**2, 4 * h * t**3, (a00 * s + V / 2))
Ejemplo n.º 3
0
def WeierstrassMap_P2_112(polynomial, variables=None):
    r"""
    Map an anticanonical hypersurface in `\mathbb{P}^2[1,1,2]` into Weierstrass form.

    Input/output is the same as :func:`WeierstrassMap`, except that
    the input polynomial must be a standard anticanonical hypersurface
    in weighted projective space `\mathbb{P}^2[1,1,2]`:

    .. MATH::

        \begin{split}
          p(x,y) =&\;
          a_{40} x^4 +
          a_{30} x^3 +
          a_{21} x^2 y +
          a_{20} x^2 +
          \\ &\;
          a_{11} x y +
          a_{02} y^2 +
          a_{10} x +
          a_{01} y +
          a_{00}
        \end{split}

    EXAMPLES::

        sage: from sage.schemes.toric.weierstrass_covering import WeierstrassMap_P2_112
        sage: from sage.schemes.toric.weierstrass import WeierstrassForm_P2_112
        sage: R = PolynomialRing(QQ, 'x,y,a0,a1,a2,a3,a4', order='lex')
        sage: R.inject_variables()
        Defining x, y, a0, a1, a2, a3, a4
        sage: equation = y^2 + a0*x^4 + 4*a1*x^3 + 6*a2*x^2 + 4*a3*x + a4
        sage: X, Y, Z = WeierstrassMap_P2_112(equation, [x,y])
        sage: f, g = WeierstrassForm_P2_112(equation, variables=[x,y])
        sage: (-Y^2 + X^3 + f*X*Z^4 + g*Z^6).reduce(R.ideal(equation))
        0

    Another example, this time in homogeneous coordinates::

        sage: fan = Fan(rays=[(1,0),(0,1),(-1,-2),(0,-1)],cones=[[0,1],[1,2],[2,3],[3,0]])
        sage: P112.<x,y,z,t> = ToricVariety(fan)
        sage: (-P112.K()).sections_monomials()
        (z^4*t^2, x*z^3*t^2, x^2*z^2*t^2, x^3*z*t^2,
         x^4*t^2, y*z^2*t, x*y*z*t, x^2*y*t, y^2)
        sage: C_eqn = sum(_)
        sage: C = P112.subscheme(C_eqn)
        sage: WeierstrassForm_P2_112(C_eqn, [x,y,z,t])
        (-97/48, 17/864)
        sage: X, Y, Z = WeierstrassMap_P2_112(C_eqn, [x,y,z,t])
        sage: (-Y^2 + X^3 - 97/48*X*Z^4 + 17/864*Z^6).reduce(C.defining_ideal())
        0
    """
    x,y,z,t = _check_polynomial_P2_112(polynomial, variables)
    a00 = polynomial.coefficient({y:2})
    V = polynomial.coefficient({y:1})
    U = - _partial_discriminant(polynomial, y, t) / 4
    Q = invariant_theory.binary_quartic(U, x, z)
    g = Q.g_covariant()
    h = Q.h_covariant()
    if t is None:
        t = 1
    return ( 4*g*t**2, 4*h*t**3, (a00*y+V/2) )
Ejemplo n.º 4
0
def WeierstrassMap_P2_112(polynomial, variables=None):
    r"""
    Map an anticanonical hypersurface in `\mathbb{P}^2[1,1,2]` into Weierstrass form.

    Input/output is the same as :func:`WeierstrassMap`, except that
    the input polynomial must be a standard anticanonical hypersurface
    in weighted projective space `\mathbb{P}^2[1,1,2]`:

    .. MATH::

        \begin{split}
          p(x,y) =&\;
          a_{40} x^4 +
          a_{30} x^3 +
          a_{21} x^2 y +
          a_{20} x^2 +
          \\ &\;
          a_{11} x y +
          a_{02} y^2 +
          a_{10} x +
          a_{01} y +
          a_{00}
        \end{split}

    EXAMPLES::

        sage: from sage.schemes.toric.weierstrass_covering import WeierstrassMap_P2_112
        sage: from sage.schemes.toric.weierstrass import WeierstrassForm_P2_112
        sage: R = PolynomialRing(QQ, 'x,y,a0,a1,a2,a3,a4', order='lex')
        sage: R.inject_variables()
        Defining x, y, a0, a1, a2, a3, a4
        sage: equation = y^2 + a0*x^4 + 4*a1*x^3 + 6*a2*x^2 + 4*a3*x + a4
        sage: X, Y, Z = WeierstrassMap_P2_112(equation, [x,y])
        sage: f, g = WeierstrassForm_P2_112(equation, variables=[x,y])
        sage: (-Y^2 + X^3 + f*X*Z^4 + g*Z^6).reduce(R.ideal(equation))
        0

    Another example, this time in homogeneous coordinates::

        sage: fan = Fan(rays=[(1,0),(0,1),(-1,-2),(0,-1)],cones=[[0,1],[1,2],[2,3],[3,0]])
        sage: P112.<x,y,z,t> = ToricVariety(fan)
        sage: (-P112.K()).sections_monomials()
        (z^4*t^2, x*z^3*t^2, x^2*z^2*t^2, x^3*z*t^2,
         x^4*t^2, y*z^2*t, x*y*z*t, x^2*y*t, y^2)
        sage: C_eqn = sum(_)
        sage: C = P112.subscheme(C_eqn)
        sage: WeierstrassForm_P2_112(C_eqn, [x,y,z,t])
        (-97/48, 17/864)
        sage: X, Y, Z = WeierstrassMap_P2_112(C_eqn, [x,y,z,t])
        sage: (-Y^2 + X^3 - 97/48*X*Z^4 + 17/864*Z^6).reduce(C.defining_ideal())
        0
    """
    x, y, z, t = _check_polynomial_P2_112(polynomial, variables)
    a00 = polynomial.coefficient({y: 2})
    V = polynomial.coefficient({y: 1})
    U = -_partial_discriminant(polynomial, y, t) / 4
    Q = invariant_theory.binary_quartic(U, x, z)
    g = Q.g_covariant()
    h = Q.h_covariant()
    if t is None:
        t = 1
    return (4 * g * t**2, 4 * h * t**3, (a00 * y + V / 2))