def drift_check_baselines():
    return DriftCheckBaselines(
        model_constraints=MetricsSource(
            s3_uri=f"s3://{BUCKET}/constraints_metrics.csv",
            content_type="text/csv",
        )
    )
def model_metrics():
    return ModelMetrics(
        model_statistics=MetricsSource(
            s3_uri=f"s3://{BUCKET}/metrics.csv",
            content_type="text/csv",
        )
    )
Ejemplo n.º 3
0
def test_model(
    sagemaker_session, mxnet_inference_version, mxnet_inference_py_version, skip_if_mms_version
):
    model = MXNetModel(
        MODEL_DATA,
        role=ROLE,
        entry_point=SCRIPT_PATH,
        framework_version=mxnet_inference_version,
        py_version=mxnet_inference_py_version,
        sagemaker_session=sagemaker_session,
    )
    predictor = model.deploy(1, GPU)
    assert isinstance(predictor, MXNetPredictor)

    model_package_name = "test-mxnet-register-model"
    content_types = ["application/json"]
    response_types = ["application/json"]
    inference_instances = ["ml.m4.xlarge"]
    transform_instances = ["ml.m4.xlarget"]

    dummy_metrics_source = MetricsSource(
        content_type="a",
        s3_uri="s3://b/c",
        content_digest="d",
    )
    model_metrics = ModelMetrics(
        model_statistics=dummy_metrics_source,
        model_constraints=dummy_metrics_source,
        model_data_statistics=dummy_metrics_source,
        model_data_constraints=dummy_metrics_source,
        bias=dummy_metrics_source,
        explainability=dummy_metrics_source,
    )
    model.register(
        content_types,
        response_types,
        inference_instances,
        transform_instances,
        model_package_name=model_package_name,
        model_metrics=model_metrics,
        marketplace_cert=True,
        approval_status="Approved",
        description="description",
    )
    expected_create_model_package_request = {
        "containers": ANY,
        "content_types": content_types,
        "response_types": response_types,
        "inference_instances": inference_instances,
        "transform_instances": transform_instances,
        "model_package_name": model_package_name,
        "model_metrics": model_metrics._to_request_dict(),
        "marketplace_cert": True,
        "approval_status": "Approved",
        "description": "description",
    }
    sagemaker_session.create_model_package_from_containers.assert_called_with(
        **expected_create_model_package_request
    )
Ejemplo n.º 4
0
def test_model_register_all_args(
    sagemaker_session,
    mxnet_inference_version,
    mxnet_inference_py_version,
    skip_if_mms_version,
):
    model = MXNetModel(
        MODEL_DATA,
        role=ROLE,
        entry_point=SCRIPT_PATH,
        framework_version=mxnet_inference_version,
        py_version=mxnet_inference_py_version,
        sagemaker_session=sagemaker_session,
    )
    predictor = model.deploy(1, GPU)
    assert isinstance(predictor, MXNetPredictor)

    model_package_name = "test-mxnet-register-model"
    content_types = ["application/json"]
    response_types = ["application/json"]
    inference_instances = ["ml.m4.xlarge"]
    transform_instances = ["ml.m4.xlarget"]

    dummy_metrics_source = MetricsSource(
        content_type="a",
        s3_uri="s3://b/c",
        content_digest="d",
    )
    dummy_file_source = FileSource(
        content_type="a",
        s3_uri="s3://b/c",
        content_digest="d",
    )
    model_metrics = ModelMetrics(
        model_statistics=dummy_metrics_source,
        model_constraints=dummy_metrics_source,
        model_data_statistics=dummy_metrics_source,
        model_data_constraints=dummy_metrics_source,
        bias=dummy_metrics_source,
        bias_pre_training=dummy_metrics_source,
        bias_post_training=dummy_metrics_source,
        explainability=dummy_metrics_source,
    )
    drift_check_baselines = DriftCheckBaselines(
        model_statistics=dummy_metrics_source,
        model_constraints=dummy_metrics_source,
        model_data_statistics=dummy_metrics_source,
        model_data_constraints=dummy_metrics_source,
        bias_config_file=dummy_file_source,
        bias_pre_training_constraints=dummy_metrics_source,
        bias_post_training_constraints=dummy_metrics_source,
        explainability_constraints=dummy_metrics_source,
        explainability_config_file=dummy_file_source,
    )
    metadata_properties = MetadataProperties(
        commit_id="test-commit-id",
        repository="test-repository",
        generated_by="sagemaker-python-sdk-test",
        project_id="test-project-id",
    )
    model.register(
        content_types,
        response_types,
        inference_instances,
        transform_instances,
        model_package_name=model_package_name,
        model_metrics=model_metrics,
        metadata_properties=metadata_properties,
        marketplace_cert=True,
        approval_status="Approved",
        description="description",
        drift_check_baselines=drift_check_baselines,
    )
    expected_create_model_package_request = {
        "containers": ANY,
        "content_types": content_types,
        "response_types": response_types,
        "inference_instances": inference_instances,
        "transform_instances": transform_instances,
        "model_package_name": model_package_name,
        "model_metrics": model_metrics._to_request_dict(),
        "metadata_properties": metadata_properties._to_request_dict(),
        "marketplace_cert": True,
        "approval_status": "Approved",
        "description": "description",
        "drift_check_baselines": drift_check_baselines._to_request_dict(),
    }
    sagemaker_session.create_model_package_from_containers.assert_called_with(
        **expected_create_model_package_request
    )
Ejemplo n.º 5
0
def get_pipeline(
    region,
    role=None,
    default_bucket=None,
    model_package_group_name="TestPackageGroup",
    pipeline_name="TestPipeline",
    base_job_prefix="Test",
):
    """Gets a SageMaker ML Pipeline instance working with on abalone data.

    Args:
        region: AWS region to create and run the pipeline.
        role: IAM role to create and run steps and pipeline.
        default_bucket: the bucket to use for storing the artifacts

    Returns:
        an instance of a pipeline
    """
    sagemaker_session = get_session(region, default_bucket)
    if role is None:
        role = sagemaker.session.get_execution_role(sagemaker_session)

    # parameters for pipeline execution
    processing_instance_count = ParameterInteger(
        name="ProcessingInstanceCount", default_value=1)
    processing_instance_type = ParameterString(name="ProcessingInstanceType",
                                               default_value="ml.m5.xlarge")
    training_instance_type = ParameterString(name="TrainingInstanceType",
                                             default_value="ml.m5.xlarge")
    model_approval_status = ParameterString(
        name="ModelApprovalStatus", default_value="PendingManualApproval")
    input_data = ParameterString(
        name="InputDataUrl",
        default_value=
        f"s3://sagemaker-servicecatalog-seedcode-{region}/dataset/abalone-dataset.csv",
    )

    # processing step for feature engineering
    sklearn_processor = SKLearnProcessor(
        framework_version="0.23-1",
        instance_type=processing_instance_type,
        instance_count=processing_instance_count,
        base_job_name=f"{base_job_prefix}/sklearn-test-preprocess",
        sagemaker_session=sagemaker_session,
        role=role,
    )
    step_process = ProcessingStep(
        name="PreprocessTestData",
        processor=sklearn_processor,
        outputs=[
            ProcessingOutput(output_name="train",
                             source="/opt/ml/processing/train"),
            ProcessingOutput(output_name="validation",
                             source="/opt/ml/processing/validation"),
            ProcessingOutput(output_name="test",
                             source="/opt/ml/processing/test"),
        ],
        code=os.path.join(BASE_DIR, "preprocess.py"),
        job_arguments=["--input-data", input_data],
    )

    # training step for generating model artifacts
    model_path = f"s3://{sagemaker_session.default_bucket()}/{base_job_prefix}/TestTrain"
    image_uri = sagemaker.image_uris.retrieve(
        framework="xgboost",
        region=region,
        version="1.0-1",
        py_version="py3",
        instance_type=training_instance_type,
    )
    xgb_train = Estimator(
        image_uri=image_uri,
        instance_type=training_instance_type,
        instance_count=1,
        output_path=model_path,
        base_job_name=f"{base_job_prefix}/test-train",
        sagemaker_session=sagemaker_session,
        role=role,
    )
    xgb_train.set_hyperparameters(
        objective="reg:linear",
        num_round=50,
        max_depth=5,
        eta=0.2,
        gamma=4,
        min_child_weight=6,
        subsample=0.7,
        silent=0,
    )
    step_train = TrainingStep(
        name="TrainTestModel",
        estimator=xgb_train,
        inputs={
            "train":
            TrainingInput(
                s3_data=step_process.properties.ProcessingOutputConfig.
                Outputs["train"].S3Output.S3Uri,
                content_type="text/csv",
            ),
            "validation":
            TrainingInput(
                s3_data=step_process.properties.ProcessingOutputConfig.
                Outputs["validation"].S3Output.S3Uri,
                content_type="text/csv",
            ),
        },
    )

    # processing step for evaluation
    script_eval = ScriptProcessor(
        image_uri=image_uri,
        command=["python3"],
        instance_type=processing_instance_type,
        instance_count=1,
        base_job_name=f"{base_job_prefix}/script-test-eval",
        sagemaker_session=sagemaker_session,
        role=role,
    )
    evaluation_report = PropertyFile(
        name="TestEvaluationReport",
        output_name="evaluation",
        path="evaluation.json",
    )
    step_eval = ProcessingStep(
        name="EvaluateTestModel",
        processor=script_eval,
        inputs=[
            ProcessingInput(
                source=step_train.properties.ModelArtifacts.S3ModelArtifacts,
                destination="/opt/ml/processing/model",
            ),
            ProcessingInput(
                source=step_process.properties.ProcessingOutputConfig.
                Outputs["test"].S3Output.S3Uri,
                destination="/opt/ml/processing/test",
            ),
        ],
        outputs=[
            ProcessingOutput(output_name="evaluation",
                             source="/opt/ml/processing/evaluation"),
        ],
        code=os.path.join(BASE_DIR, "evaluate.py"),
        property_files=[evaluation_report],
    )

    # register model step that will be conditionally executed
    model_metrics = ModelMetrics(
        model_statistics=MetricsSource(s3_uri="{}/evaluation.json".format(
            step_eval.arguments["ProcessingOutputConfig"]["Outputs"][0]
            ["S3Output"]["S3Uri"]),
                                       content_type="application/json"))
    step_register = RegisterModel(
        name="RegisterTestModel",
        estimator=xgb_train,
        model_data=step_train.properties.ModelArtifacts.S3ModelArtifacts,
        content_types=["text/csv"],
        response_types=["text/csv"],
        inference_instances=["ml.t2.medium", "ml.m5.large"],
        transform_instances=["ml.m5.large"],
        model_package_group_name=model_package_group_name,
        approval_status=model_approval_status,
        model_metrics=model_metrics,
    )

    # condition step for evaluating model quality and branching execution
    cond_lte = ConditionLessThanOrEqualTo(
        left=JsonGet(step=step_eval,
                     property_file=evaluation_report,
                     json_path="regression_metrics.mse.value"),
        right=6.0,
    )
    step_cond = ConditionStep(
        name="CheckMSETestEvaluation",
        conditions=[cond_lte],
        if_steps=[step_register],
        else_steps=[],
    )

    # pipeline instance
    pipeline = Pipeline(
        name=pipeline_name,
        parameters=[
            processing_instance_type,
            processing_instance_count,
            training_instance_type,
            model_approval_status,
            input_data,
        ],
        steps=[step_process, step_train, step_eval, step_cond],
        sagemaker_session=sagemaker_session,
    )
    return pipeline
def get_pipeline(
        region,
        role=None,
        default_bucket=None,
        model_package_group_name="CustomerChurnPackageGroup",  # Choose any name
        pipeline_name="CustomerChurnDemo-p-ewf8t7lvhivm",  # You can find your pipeline name in the Studio UI (project -> Pipelines -> name)
        base_job_prefix="CustomerChurn",  # Choose any name
):
    """Gets a SageMaker ML Pipeline instance working with on CustomerChurn data.
    Args:
        region: AWS region to create and run the pipeline.
        role: IAM role to create and run steps and pipeline.
        default_bucket: the bucket to use for storing the artifacts
    Returns:
        an instance of a pipeline
    """
    sagemaker_session = get_session(region, default_bucket)
    if role is None:
        role = sagemaker.session.get_execution_role(sagemaker_session)

    # Parameters for pipeline execution
    processing_instance_count = ParameterInteger(
        name="ProcessingInstanceCount", default_value=1)
    processing_instance_type = ParameterString(name="ProcessingInstanceType",
                                               default_value="ml.m5.xlarge")
    training_instance_type = ParameterString(name="TrainingInstanceType",
                                             default_value="ml.m5.xlarge")
    model_approval_status = ParameterString(
        name="ModelApprovalStatus",
        default_value=
        "PendingManualApproval",  # ModelApprovalStatus can be set to a default of "Approved" if you don't want manual approval.
    )
    input_data = ParameterString(
        name="InputDataUrl",
        default_value=
        f"s3://sm-pipelines-demo-data-123456789/churn.txt",  # Change this to point to the s3 location of your raw input data.
    )

    # Processing step for feature engineering
    sklearn_processor = SKLearnProcessor(
        framework_version="0.23-1",
        instance_type=processing_instance_type,
        instance_count=processing_instance_count,
        base_job_name=
        f"{base_job_prefix}/sklearn-CustomerChurn-preprocess",  # choose any name
        sagemaker_session=sagemaker_session,
        role=role,
    )
    step_process = ProcessingStep(
        name="CustomerChurnProcess",  # choose any name
        processor=sklearn_processor,
        outputs=[
            ProcessingOutput(output_name="train",
                             source="/opt/ml/processing/train"),
            ProcessingOutput(output_name="validation",
                             source="/opt/ml/processing/validation"),
            ProcessingOutput(output_name="test",
                             source="/opt/ml/processing/test"),
        ],
        code=os.path.join(BASE_DIR, "preprocess.py"),
        job_arguments=["--input-data", input_data],
    )

    # Training step for generating model artifacts
    model_path = f"s3://{sagemaker_session.default_bucket()}/{base_job_prefix}/CustomerChurnTrain"
    image_uri = sagemaker.image_uris.retrieve(
        framework=
        "xgboost",  # we are using the Sagemaker built in xgboost algorithm
        region=region,
        version="1.0-1",
        py_version="py3",
        instance_type=training_instance_type,
    )
    xgb_train = Estimator(
        image_uri=image_uri,
        instance_type=training_instance_type,
        instance_count=1,
        output_path=model_path,
        base_job_name=f"{base_job_prefix}/CustomerChurn-train",
        sagemaker_session=sagemaker_session,
        role=role,
    )
    xgb_train.set_hyperparameters(
        objective="binary:logistic",
        num_round=50,
        max_depth=5,
        eta=0.2,
        gamma=4,
        min_child_weight=6,
        subsample=0.7,
        silent=0,
    )
    step_train = TrainingStep(
        name="CustomerChurnTrain",
        estimator=xgb_train,
        inputs={
            "train":
            TrainingInput(
                s3_data=step_process.properties.ProcessingOutputConfig.
                Outputs["train"].S3Output.S3Uri,
                content_type="text/csv",
            ),
            "validation":
            TrainingInput(
                s3_data=step_process.properties.ProcessingOutputConfig.
                Outputs["validation"].S3Output.S3Uri,
                content_type="text/csv",
            ),
        },
    )

    # Processing step for evaluation
    script_eval = ScriptProcessor(
        image_uri=image_uri,
        command=["python3"],
        instance_type=processing_instance_type,
        instance_count=1,
        base_job_name=f"{base_job_prefix}/script-CustomerChurn-eval",
        sagemaker_session=sagemaker_session,
        role=role,
    )
    evaluation_report = PropertyFile(
        name="EvaluationReport",
        output_name="evaluation",
        path="evaluation.json",
    )
    step_eval = ProcessingStep(
        name="CustomerChurnEval",
        processor=script_eval,
        inputs=[
            ProcessingInput(
                source=step_train.properties.ModelArtifacts.S3ModelArtifacts,
                destination="/opt/ml/processing/model",
            ),
            ProcessingInput(
                source=step_process.properties.ProcessingOutputConfig.
                Outputs["test"].S3Output.S3Uri,
                destination="/opt/ml/processing/test",
            ),
        ],
        outputs=[
            ProcessingOutput(output_name="evaluation",
                             source="/opt/ml/processing/evaluation"),
        ],
        code=os.path.join(BASE_DIR, "evaluate.py"),
        property_files=[evaluation_report],
    )

    # Register model step that will be conditionally executed
    model_metrics = ModelMetrics(model_statistics=MetricsSource(
        s3_uri="{}/evaluation.json".format(
            step_eval.arguments["ProcessingOutputConfig"]["Outputs"][0]
            ["S3Output"]["S3Uri"]),
        content_type="application/json",
    ))

    # Register model step that will be conditionally executed
    step_register = RegisterModel(
        name="CustomerChurnRegisterModel",
        estimator=xgb_train,
        model_data=step_train.properties.ModelArtifacts.S3ModelArtifacts,
        content_types=["text/csv"],
        response_types=["text/csv"],
        inference_instances=["ml.t2.medium", "ml.m5.large"],
        transform_instances=["ml.m5.large"],
        model_package_group_name=model_package_group_name,
        approval_status=model_approval_status,
        model_metrics=model_metrics,
    )

    # Condition step for evaluating model quality and branching execution
    cond_lte = ConditionGreaterThanOrEqualTo(  # You can change the condition here
        left=JsonGet(
            step=step_eval,
            property_file=evaluation_report,
            json_path=
            "binary_classification_metrics.accuracy.value",  # This should follow the structure of your report_dict defined in the evaluate.py file.
        ),
        right=0.8,  # You can change the threshold here
    )
    step_cond = ConditionStep(
        name="CustomerChurnAccuracyCond",
        conditions=[cond_lte],
        if_steps=[step_register],
        else_steps=[],
    )

    # Pipeline instance
    pipeline = Pipeline(
        name=pipeline_name,
        parameters=[
            processing_instance_type,
            processing_instance_count,
            training_instance_type,
            model_approval_status,
            input_data,
        ],
        steps=[step_process, step_train, step_eval, step_cond],
        sagemaker_session=sagemaker_session,
    )
    return pipeline
Ejemplo n.º 7
0
                         source="/opt/ml/processing/mlmodel"),
        ProcessingOutput(output_name="eval_images",
                         source="/opt/ml/processing/eval_images")
    ],
    code=f"{conf.source_dir}/evaluation.py",
    property_files=[evaluation_report])

cond_map = ConditionGreaterThanOrEqualTo(
    left=JsonGet(step=step_eval,
                 property_file=evaluation_report,
                 json_path="regression_metrics.mAP.value"),
    right=conf.model_approval_map_threshold)

model_metrics = ModelMetrics(
    model_statistics=MetricsSource(s3_uri="{}/evaluation.json".format(
        step_eval.arguments["ProcessingOutputConfig"]["Outputs"][0]["S3Output"]
        ["S3Uri"]),
                                   content_type="application/json"))

step_register = RegisterModel(
    name="BittiRegisterModel",
    estimator=tf_train,
    model_data=step_train.properties.ModelArtifacts.S3ModelArtifacts,
    content_types=["application/octet-stream"],
    response_types=["application/octet-stream"],
    inference_instances=["ml.t2.medium", "ml.m5.xlarge"],
    transform_instances=["ml.m5.xlarge"],
    model_package_group_name=conf.model_package_group_name,
    approval_status=conf.model_approval_status,
    model_metrics=model_metrics)

script_publish = ScriptProcessor(image_uri=str(conf.processing_turicreate_uri),
def get_pipeline(region, role, default_bucket, pipeline_name,
                 model_package_group_name, base_job_prefix):
    """Gets a SageMaker ML Pipeline instance working with BERT.

    Args:
        region: AWS region to create and run the pipeline.
        role: IAM role to create and run steps and pipeline.
        default_bucket: the bucket to use for storing the artifacts
        pipeline_name:  name of this pipeline
        model_package_group_name:  model package group
        base_job_prefix:  prefic of the job name

    Returns:
        an instance of a pipeline
    """

    sm = boto3.Session().client(service_name="sagemaker", region_name=region)

    input_data = ParameterString(
        name="InputDataUrl",
        default_value="s3://{}/amazon-reviews-pds/tsv/".format(bucket),
    )

    processing_instance_count = ParameterInteger(
        name="ProcessingInstanceCount", default_value=1)

    processing_instance_type = ParameterString(name="ProcessingInstanceType",
                                               default_value="ml.c5.2xlarge")

    max_seq_length = ParameterInteger(
        name="MaxSeqLength",
        default_value=64,
    )

    balance_dataset = ParameterString(
        name="BalanceDataset",
        default_value="True",
    )

    train_split_percentage = ParameterFloat(
        name="TrainSplitPercentage",
        default_value=0.90,
    )

    validation_split_percentage = ParameterFloat(
        name="ValidationSplitPercentage",
        default_value=0.05,
    )

    test_split_percentage = ParameterFloat(
        name="TestSplitPercentage",
        default_value=0.05,
    )

    feature_store_offline_prefix = ParameterString(
        name="FeatureStoreOfflinePrefix",
        default_value="reviews-feature-store-" + str(timestamp),
    )

    feature_group_name = ParameterString(
        name="FeatureGroupName",
        default_value="reviews-feature-group-" + str(timestamp))

    train_instance_type = ParameterString(name="TrainInstanceType",
                                          default_value="ml.c5.9xlarge")

    train_instance_count = ParameterInteger(name="TrainInstanceCount",
                                            default_value=1)

    #########################
    # PROCESSING STEP
    #########################

    processor = SKLearnProcessor(
        framework_version="0.23-1",
        role=role,
        instance_type=processing_instance_type,
        instance_count=processing_instance_count,
        env={"AWS_DEFAULT_REGION": region},
        max_runtime_in_seconds=7200,
    )

    processing_inputs = [
        ProcessingInput(
            input_name="raw-input-data",
            source=input_data,
            destination="/opt/ml/processing/input/data/",
            s3_data_distribution_type="ShardedByS3Key",
        )
    ]

    processing_outputs = [
        ProcessingOutput(
            output_name="bert-train",
            s3_upload_mode="EndOfJob",
            source="/opt/ml/processing/output/bert/train",
        ),
        ProcessingOutput(
            output_name="bert-validation",
            s3_upload_mode="EndOfJob",
            source="/opt/ml/processing/output/bert/validation",
        ),
        ProcessingOutput(
            output_name="bert-test",
            s3_upload_mode="EndOfJob",
            source="/opt/ml/processing/output/bert/test",
        ),
    ]

    # TODO:  Figure out why the Parameter's are not resolving properly to their native type when user here.
    #        We shouldn't be using `default_value`
    processing_step = ProcessingStep(
        name="Processing",
        processor=processor,
        inputs=processing_inputs,
        outputs=processing_outputs,
        job_arguments=[
            "--train-split-percentage",
            str(train_split_percentage.default_value),
            "--validation-split-percentage",
            str(validation_split_percentage.default_value),
            "--test-split-percentage",
            str(test_split_percentage.default_value),
            "--max-seq-length",
            str(max_seq_length.default_value),
            "--balance-dataset",
            str(balance_dataset.default_value),
            "--feature-store-offline-prefix",
            str(feature_store_offline_prefix.default_value),
            "--feature-group-name",
            str(feature_group_name.default_value),
        ],
        code=os.path.join(BASE_DIR,
                          "preprocess-scikit-text-to-bert-feature-store.py"),
    )

    #########################
    # TRAINING STEP
    #########################

    epochs = ParameterInteger(name="Epochs", default_value=1)

    learning_rate = ParameterFloat(name="LearningRate", default_value=0.00001)

    epsilon = ParameterFloat(name="Epsilon", default_value=0.00000001)

    train_batch_size = ParameterInteger(name="TrainBatchSize",
                                        default_value=128)

    validation_batch_size = ParameterInteger(name="ValidationBatchSize",
                                             default_value=128)

    test_batch_size = ParameterInteger(name="TestBatchSize", default_value=128)

    train_steps_per_epoch = ParameterInteger(name="TrainStepsPerEpoch",
                                             default_value=50)

    validation_steps = ParameterInteger(name="ValidationSteps",
                                        default_value=50)

    test_steps = ParameterInteger(name="TestSteps", default_value=50)

    train_volume_size = ParameterInteger(name="TrainVolumeSize",
                                         default_value=1024)

    use_xla = ParameterString(
        name="UseXLA",
        default_value="True",
    )

    use_amp = ParameterString(
        name="UseAMP",
        default_value="True",
    )

    freeze_bert_layer = ParameterString(
        name="FreezeBERTLayer",
        default_value="False",
    )

    enable_sagemaker_debugger = ParameterString(
        name="EnableSageMakerDebugger",
        default_value="False",
    )

    enable_checkpointing = ParameterString(
        name="EnableCheckpointing",
        default_value="False",
    )

    enable_tensorboard = ParameterString(
        name="EnableTensorboard",
        default_value="False",
    )

    input_mode = ParameterString(
        name="InputMode",
        default_value="File",
    )

    run_validation = ParameterString(
        name="RunValidation",
        default_value="True",
    )

    run_test = ParameterString(
        name="RunTest",
        default_value="False",
    )

    run_sample_predictions = ParameterString(
        name="RunSamplePredictions",
        default_value="False",
    )

    metrics_definitions = [
        {
            "Name": "train:loss",
            "Regex": "loss: ([0-9\\.]+)"
        },
        {
            "Name": "train:accuracy",
            "Regex": "accuracy: ([0-9\\.]+)"
        },
        {
            "Name": "validation:loss",
            "Regex": "val_loss: ([0-9\\.]+)"
        },
        {
            "Name": "validation:accuracy",
            "Regex": "val_accuracy: ([0-9\\.]+)"
        },
    ]

    train_src = os.path.join(BASE_DIR, "src")
    model_path = f"s3://{default_bucket}/{base_job_prefix}/output/model"

    estimator = TensorFlow(
        entry_point="tf_bert_reviews.py",
        source_dir=BASE_DIR,
        role=role,
        output_path=model_path,
        instance_count=train_instance_count,
        instance_type=train_instance_type,
        volume_size=train_volume_size,
        py_version="py37",
        framework_version="2.3.1",
        hyperparameters={
            "epochs": epochs,
            "learning_rate": learning_rate,
            "epsilon": epsilon,
            "train_batch_size": train_batch_size,
            "validation_batch_size": validation_batch_size,
            "test_batch_size": test_batch_size,
            "train_steps_per_epoch": train_steps_per_epoch,
            "validation_steps": validation_steps,
            "test_steps": test_steps,
            "use_xla": use_xla,
            "use_amp": use_amp,
            "max_seq_length": max_seq_length,
            "freeze_bert_layer": freeze_bert_layer,
            "enable_sagemaker_debugger": enable_sagemaker_debugger,
            "enable_checkpointing": enable_checkpointing,
            "enable_tensorboard": enable_tensorboard,
            "run_validation": run_validation,
            "run_test": run_test,
            "run_sample_predictions": run_sample_predictions,
        },
        input_mode=input_mode,
        metric_definitions=metrics_definitions,
        #        max_run=7200 # max 2 hours * 60 minutes seconds per hour * 60 seconds per minute
    )

    training_step = TrainingStep(
        name="Train",
        estimator=estimator,
        inputs={
            "train":
            TrainingInput(
                s3_data=processing_step.properties.ProcessingOutputConfig.
                Outputs["bert-train"].S3Output.S3Uri,
                content_type="text/csv",
            ),
            "validation":
            TrainingInput(
                s3_data=processing_step.properties.ProcessingOutputConfig.
                Outputs["bert-validation"].S3Output.S3Uri,
                content_type="text/csv",
            ),
            "test":
            TrainingInput(
                s3_data=processing_step.properties.ProcessingOutputConfig.
                Outputs["bert-test"].S3Output.S3Uri,
                content_type="text/csv",
            ),
        },
    )

    #########################
    # EVALUATION STEP
    #########################

    evaluation_processor = SKLearnProcessor(
        framework_version="0.23-1",
        role=role,
        instance_type=processing_instance_type,
        instance_count=processing_instance_count,
        env={"AWS_DEFAULT_REGION": region},
        max_runtime_in_seconds=7200,
    )

    evaluation_report = PropertyFile(name="EvaluationReport",
                                     output_name="metrics",
                                     path="evaluation.json")

    evaluation_step = ProcessingStep(
        name="EvaluateModel",
        processor=evaluation_processor,
        code=os.path.join(BASE_DIR, "evaluate_model_metrics.py"),
        inputs=[
            ProcessingInput(
                source=training_step.properties.ModelArtifacts.
                S3ModelArtifacts,
                destination="/opt/ml/processing/input/model",
            ),
            ProcessingInput(
                source=processing_step.properties.
                ProcessingInputs["raw-input-data"].S3Input.S3Uri,
                destination="/opt/ml/processing/input/data",
            ),
        ],
        outputs=[
            ProcessingOutput(output_name="metrics",
                             s3_upload_mode="EndOfJob",
                             source="/opt/ml/processing/output/metrics/"),
        ],
        job_arguments=[
            "--max-seq-length",
            str(max_seq_length.default_value),
        ],
        property_files=[evaluation_report
                        ],  # these cause deserialization issues
    )

    model_metrics = ModelMetrics(model_statistics=MetricsSource(
        s3_uri="{}/evaluation.json".format(
            evaluation_step.arguments["ProcessingOutputConfig"]["Outputs"][0]
            ["S3Output"]["S3Uri"]),
        content_type="application/json",
    ))

    #########################
    ## REGISTER TRAINED MODEL STEP
    #########################

    model_approval_status = ParameterString(
        name="ModelApprovalStatus", default_value="PendingManualApproval")

    deploy_instance_type = ParameterString(name="DeployInstanceType",
                                           default_value="ml.m5.4xlarge")

    deploy_instance_count = ParameterInteger(name="DeployInstanceCount",
                                             default_value=1)

    inference_image_uri = sagemaker.image_uris.retrieve(
        framework="tensorflow",
        region=region,
        version="2.3.1",
        py_version="py37",
        instance_type=deploy_instance_type,
        image_scope="inference",
    )
    print(inference_image_uri)

    register_step = RegisterModel(
        name="RegisterModel",
        estimator=estimator,
        image_uri=
        inference_image_uri,  # we have to specify, by default it's using training image
        model_data=training_step.properties.ModelArtifacts.S3ModelArtifacts,
        content_types=["text/csv"],
        response_types=["text/csv"],
        inference_instances=[
            deploy_instance_type
        ],  # The JSON spec must be within these instance types or we will see "Instance Type Not Allowed" Exception
        transform_instances=[deploy_instance_type],
        model_package_group_name=model_package_group_name,
        approval_status=model_approval_status,
    )

    #########################
    ## CREATE MODEL FOR DEPLOYMENT STEP
    #########################

    model = Model(
        image_uri=inference_image_uri,
        model_data=training_step.properties.ModelArtifacts.S3ModelArtifacts,
        sagemaker_session=sess,
        role=role,
    )

    create_inputs = CreateModelInput(instance_type=deploy_instance_type, )

    create_step = CreateModelStep(
        name="CreateModel",
        model=model,
        inputs=create_inputs,
    )

    #########################
    ## CONDITION STEP:  EVALUATE THE MODEL
    #########################

    min_accuracy_value = ParameterFloat(name="MinAccuracyValue",
                                        default_value=0.01)

    minimum_accuracy_condition = ConditionGreaterThanOrEqualTo(
        left=JsonGet(
            step=evaluation_step,
            property_file=evaluation_report,
            json_path="metrics.accuracy.value",
        ),
        right=min_accuracy_value,  # accuracy
    )

    minimum_accuracy_condition_step = ConditionStep(
        name="AccuracyCondition",
        conditions=[minimum_accuracy_condition],
        if_steps=[register_step,
                  create_step],  # success, continue with model registration
        else_steps=[],  # fail, end the pipeline
    )

    #########################
    ## CREATE PIPELINE
    #########################

    pipeline = Pipeline(
        name=pipeline_name,
        parameters=[
            input_data,
            processing_instance_count,
            processing_instance_type,
            max_seq_length,
            balance_dataset,
            train_split_percentage,
            validation_split_percentage,
            test_split_percentage,
            feature_store_offline_prefix,
            feature_group_name,
            train_instance_type,
            train_instance_count,
            epochs,
            learning_rate,
            epsilon,
            train_batch_size,
            validation_batch_size,
            test_batch_size,
            train_steps_per_epoch,
            validation_steps,
            test_steps,
            train_volume_size,
            use_xla,
            use_amp,
            freeze_bert_layer,
            enable_sagemaker_debugger,
            enable_checkpointing,
            enable_tensorboard,
            input_mode,
            run_validation,
            run_test,
            run_sample_predictions,
            min_accuracy_value,
            model_approval_status,
            deploy_instance_type,
            deploy_instance_count,
        ],
        steps=[
            processing_step, training_step, evaluation_step,
            minimum_accuracy_condition_step
        ],
        sagemaker_session=sess,
    )

    #########################
    ## RETURN PIPELINE
    #########################

    return pipeline
Ejemplo n.º 9
0
def get_pipeline(
    region,
    sagemaker_project_arn=None,
    role=None,
    default_bucket=None,
    model_package_group_name="restatePackageGroup",  # Choose any name
    pipeline_name="restate-p-XXXXXXXXX",  # You can find your pipeline name in the Studio UI (project -> Pipelines -> name)
    base_job_prefix="restate",  # Choose any name
):
    """Gets a SageMaker ML Pipeline instance working with on RE data.
    Args:
        region: AWS region to create and run the pipeline.
        role: IAM role to create and run steps and pipeline.
        default_bucket: the bucket to use for storing the artifacts
    Returns:
        an instance of a pipeline
    """
    sagemaker_session = get_session(region, default_bucket)
    if role is None:
        role = sagemaker.session.get_execution_role(sagemaker_session)

    # Parameters for pipeline execution
    processing_instance_count = ParameterInteger(name="ProcessingInstanceCount", default_value=1)
    processing_instance_type = ParameterString(
        name="ProcessingInstanceType", default_value="ml.m5.2xlarge"
    )
    training_instance_type = ParameterString(
        name="TrainingInstanceType", default_value="ml.m5.xlarge"
    )
    model_approval_status = ParameterString(
        name="ModelApprovalStatus",
        default_value="PendingManualApproval",  # ModelApprovalStatus can be set to a default of "Approved" if you don't want manual approval.
    )
    input_data = ParameterString(
        name="InputDataUrl",
        default_value=f"",  # Change this to point to the s3 location of your raw input data.
    )

    data_sources = []
    # Sagemaker session
    sess = sagemaker_session

    # You can configure this with your own bucket name, e.g.
    # bucket = "my-bucket"
    bucket = sess.default_bucket()

    data_sources.append(
        ProcessingInput(
            input_name="restate-california",
            dataset_definition=DatasetDefinition(
                local_path="/opt/ml/processing/restate-california",
                data_distribution_type="FullyReplicated",
                # You can override below to point to other database or use different queries
                athena_dataset_definition=AthenaDatasetDefinition(
                    catalog="AwsDataCatalog",
                    database="restate",
                    query_string="SELECT * FROM restate.california_10",
                    output_s3_uri=f"s3://{bucket}/athena/",
                    output_format="PARQUET",
                ),
            ),
        )
    )

    print(f"Data Wrangler export storage bucket: {bucket}")

    # unique flow export ID
    flow_export_id = f"{time.strftime('%d-%H-%M-%S', time.gmtime())}-{str(uuid.uuid4())[:8]}"
    flow_export_name = f"flow-{flow_export_id}"

    # Output name is auto-generated from the select node's ID + output name from the flow file.
    output_name = "99ae1ec3-dd5f-453c-bfae-721dac423cd7.default"

    s3_output_prefix = f"export-{flow_export_name}/output"
    s3_output_path = f"s3://{bucket}/{s3_output_prefix}"
    print(f"Flow S3 export result path: {s3_output_path}")

    processing_job_output = ProcessingOutput(
        output_name=output_name,
        source="/opt/ml/processing/output",
        destination=s3_output_path,
        s3_upload_mode="EndOfJob",
    )

    # name of the flow file which should exist in the current notebook working directory
    flow_file_name = "sagemaker-pipeline/restate-athena-california.flow"

    # Load .flow file from current notebook working directory
    #!echo "Loading flow file from current notebook working directory: $PWD"

    with open(flow_file_name) as f:
        flow = json.load(f)

    # Upload flow to S3
    s3_client = boto3.client("s3")
    s3_client.upload_file(
        flow_file_name,
        bucket,
        f"data_wrangler_flows/{flow_export_name}.flow",
        ExtraArgs={"ServerSideEncryption": "aws:kms"},
    )

    flow_s3_uri = f"s3://{bucket}/data_wrangler_flows/{flow_export_name}.flow"

    print(f"Data Wrangler flow {flow_file_name} uploaded to {flow_s3_uri}")

    ## Input - Flow: restate-athena-russia.flow
    flow_input = ProcessingInput(
        source=flow_s3_uri,
        destination="/opt/ml/processing/flow",
        input_name="flow",
        s3_data_type="S3Prefix",
        s3_input_mode="File",
        s3_data_distribution_type="FullyReplicated",
    )

    # IAM role for executing the processing job.
    iam_role = role

    # Unique processing job name. Give a unique name every time you re-execute processing jobs
    processing_job_name = f"data-wrangler-flow-processing-{flow_export_id}"

    # Data Wrangler Container URL.
    container_uri = sagemaker.image_uris.retrieve(
        framework="data-wrangler",  # we are using the Sagemaker built in xgboost algorithm
        region=region,
    )

    # Processing Job Instance count and instance type.
    instance_count = 2
    instance_type = "ml.m5.4xlarge"

    # Size in GB of the EBS volume to use for storing data during processing
    volume_size_in_gb = 30

    # Content type for each output. Data Wrangler supports CSV as default and Parquet.
    output_content_type = "CSV"

    # Network Isolation mode; default is off
    enable_network_isolation = False

    # List of tags to be passed to the processing job
    user_tags = []

    # Output configuration used as processing job container arguments
    output_config = {output_name: {"content_type": output_content_type}}

    # KMS key for per object encryption; default is None
    kms_key = None

    processor = Processor(
        role=iam_role,
        image_uri=container_uri,
        instance_count=instance_count,
        instance_type=instance_type,
        volume_size_in_gb=volume_size_in_gb,
        network_config=NetworkConfig(enable_network_isolation=enable_network_isolation),
        sagemaker_session=sess,
        output_kms_key=kms_key,
        tags=user_tags,
    )

    data_wrangler_step = ProcessingStep(
        name="DataWranglerProcess",
        processor=processor,
        inputs=[flow_input] + data_sources,
        outputs=[processing_job_output],
        job_arguments=[f"--output-config '{json.dumps(output_config)}'"],
    )

    # Processing step for feature engineering
    # this processor does not have awswrangler installed
    sklearn_processor = SKLearnProcessor(
        framework_version="0.23-1",
        instance_type=processing_instance_type,
        instance_count=processing_instance_count,
        base_job_name=f"{base_job_prefix}/sklearn-restate-preprocess",  # choose any name
        sagemaker_session=sagemaker_session,
        role=role,
    )

    step_process = ProcessingStep(
        name="Preprocess",  # choose any name
        processor=sklearn_processor,
        inputs=[
            ProcessingInput(
                source=data_wrangler_step.properties.ProcessingOutputConfig.Outputs[
                    output_name
                ].S3Output.S3Uri,
                destination="/opt/ml/processing/data/raw-data-dir",
            )
        ],
        outputs=[
            ProcessingOutput(output_name="train", source="/opt/ml/processing/train"),
            ProcessingOutput(output_name="validation", source="/opt/ml/processing/validation"),
            ProcessingOutput(output_name="test", source="/opt/ml/processing/test"),
        ],
        code=os.path.join(BASE_DIR, "preprocess.py"),
        job_arguments=[
            "--input-data",
            data_wrangler_step.properties.ProcessingOutputConfig.Outputs[
                output_name
            ].S3Output.S3Uri,
        ],
    )

    # Training step for generating model artifacts
    model_path = f"s3://{sagemaker_session.default_bucket()}/{base_job_prefix}/restateTrain"
    model_bucket_key = f"{sagemaker_session.default_bucket()}/{base_job_prefix}/restateTrain"
    cache_config = CacheConfig(enable_caching=True, expire_after="30d")

    xgb_image_uri = sagemaker.image_uris.retrieve(
        framework="xgboost",  # we are using the Sagemaker built in xgboost algorithm
        region=region,
        version="1.0-1",
        py_version="py3",
        instance_type=training_instance_type,
    )
    xgb_train = Estimator(
        image_uri=xgb_image_uri,
        instance_type=training_instance_type,
        instance_count=1,
        output_path=model_path,
        base_job_name=f"{base_job_prefix}/restate-xgb-train",
        sagemaker_session=sagemaker_session,
        role=role,
    )
    xgb_train.set_hyperparameters(
        #    #objective="binary:logistic",
        #    objective="reg:linear",
        num_round=50,
        #    max_depth=5,
        #    eta=0.2,
        #    gamma=4,
        #    min_child_weight=6,
        #    subsample=0.7,
        #    silent=0,
    )

    xgb_train.set_hyperparameters(grow_policy="lossguide")

    xgb_objective_metric_name = "validation:mse"
    xgb_hyperparameter_ranges = {
        "max_depth": IntegerParameter(2, 10, scaling_type="Linear"),
    }

    xgb_tuner_log = HyperparameterTuner(
        xgb_train,
        xgb_objective_metric_name,
        xgb_hyperparameter_ranges,
        max_jobs=3,
        max_parallel_jobs=3,
        strategy="Random",
        objective_type="Minimize",
    )

    xgb_step_tuning = TuningStep(
        name="XGBHPTune",
        tuner=xgb_tuner_log,
        inputs={
            "train": TrainingInput(
                s3_data=step_process.properties.ProcessingOutputConfig.Outputs[
                    "train"
                ].S3Output.S3Uri,
                content_type="text/csv",
            ),
            "validation": TrainingInput(
                s3_data=step_process.properties.ProcessingOutputConfig.Outputs[
                    "validation"
                ].S3Output.S3Uri,
                content_type="text/csv",
            ),
        },
        cache_config=cache_config,
    )

    # dtree_image_uri = '625467769535.dkr.ecr.ap-southeast-1.amazonaws.com/sagemaker-decision-tree:latest'
    dtree_image_uri = sagemaker_session.sagemaker_client.describe_image_version(
        ImageName="restate-dtree"
    )["ContainerImage"]

    dtree_train = Estimator(
        image_uri=dtree_image_uri,
        role=role,
        instance_count=1,
        instance_type=training_instance_type,
        base_job_name=f"{base_job_prefix}/restate-dtree-train",
        output_path=model_path,
        sagemaker_session=sagemaker_session,
    )

    dtree_objective_metric_name = "validation:mse"
    dtree_metric_definitions = [{"Name": "validation:mse", "Regex": "mse:(\S+)"}]

    dtree_hyperparameter_ranges = {
        "max_depth": IntegerParameter(10, 50, scaling_type="Linear"),
        "max_leaf_nodes": IntegerParameter(2, 12, scaling_type="Linear"),
    }

    dtree_tuner_log = HyperparameterTuner(
        dtree_train,
        dtree_objective_metric_name,
        dtree_hyperparameter_ranges,
        dtree_metric_definitions,
        max_jobs=3,
        max_parallel_jobs=3,
        strategy="Random",
        objective_type="Minimize",
    )

    dtree_step_tuning = TuningStep(
        name="DTreeHPTune",
        tuner=dtree_tuner_log,
        inputs={
            "training": TrainingInput(
                s3_data=step_process.properties.ProcessingOutputConfig.Outputs[
                    "train"
                ].S3Output.S3Uri,
                content_type="text/csv",
            ),
            "validation": TrainingInput(
                s3_data=step_process.properties.ProcessingOutputConfig.Outputs[
                    "validation"
                ].S3Output.S3Uri,
                content_type="text/csv",
            ),
        },
        cache_config=cache_config,
    )

    dtree_script_eval = ScriptProcessor(
        image_uri=dtree_image_uri,
        command=["python3"],
        instance_type=processing_instance_type,
        instance_count=1,
        base_job_name=f"{base_job_prefix}/script-dtree-eval",
        sagemaker_session=sagemaker_session,
        role=role,
    )

    dtree_evaluation_report = PropertyFile(
        name="EvaluationReportDTree",
        output_name="dtree_evaluation",
        path="dtree_evaluation.json",
    )

    dtree_step_eval = ProcessingStep(
        name="DTreeEval",
        processor=dtree_script_eval,
        inputs=[
            ProcessingInput(
                # source=dtree_step_train.properties.ModelArtifacts.S3ModelArtifacts,
                source=dtree_step_tuning.get_top_model_s3_uri(top_k=0, s3_bucket=model_bucket_key),
                destination="/opt/ml/processing/model",
            ),
            ProcessingInput(
                source=step_process.properties.ProcessingOutputConfig.Outputs[
                    "test"
                ].S3Output.S3Uri,
                destination="/opt/ml/processing/test",
            ),
        ],
        outputs=[
            ProcessingOutput(
                output_name="dtree_evaluation", source="/opt/ml/processing/evaluation"
            ),
        ],
        code=os.path.join(BASE_DIR, "dtree_evaluate.py"),
        property_files=[dtree_evaluation_report],
    )

    xgb_script_eval = ScriptProcessor(
        image_uri=xgb_image_uri,
        command=["python3"],
        instance_type=processing_instance_type,
        instance_count=1,
        base_job_name=f"{base_job_prefix}/script-xgb-eval",
        sagemaker_session=sagemaker_session,
        role=role,
    )

    xgb_evaluation_report = PropertyFile(
        name="EvaluationReportXGBoost",
        output_name="xgb_evaluation",
        path="xgb_evaluation.json",
    )

    xgb_step_eval = ProcessingStep(
        name="XGBEval",
        processor=xgb_script_eval,
        inputs=[
            ProcessingInput(
                source=xgb_step_tuning.get_top_model_s3_uri(top_k=0, s3_bucket=model_bucket_key),
                destination="/opt/ml/processing/model",
            ),
            ProcessingInput(
                source=step_process.properties.ProcessingOutputConfig.Outputs[
                    "test"
                ].S3Output.S3Uri,
                destination="/opt/ml/processing/test",
            ),
        ],
        outputs=[
            ProcessingOutput(output_name="xgb_evaluation", source="/opt/ml/processing/evaluation"),
        ],
        code=os.path.join(BASE_DIR, "xgb_evaluate.py"),
        property_files=[xgb_evaluation_report],
    )

    xgb_model_metrics = ModelMetrics(
        model_statistics=MetricsSource(
            s3_uri="{}/xgb_evaluation.json".format(
                xgb_step_eval.arguments["ProcessingOutputConfig"]["Outputs"][0]["S3Output"]["S3Uri"]
            ),
            content_type="application/json",
        )
    )

    dtree_model_metrics = ModelMetrics(
        model_statistics=MetricsSource(
            s3_uri="{}/dtree_evaluation.json".format(
                dtree_step_eval.arguments["ProcessingOutputConfig"]["Outputs"][0]["S3Output"][
                    "S3Uri"
                ]
            ),
            content_type="application/json",
        )
    )

    xgb_eval_metrics = JsonGet(
        step=xgb_step_eval,
        property_file=xgb_evaluation_report,
        json_path="regression_metrics.r2s.value",  # This should follow the structure of your report_dict defined in the evaluate.py file.
    )

    dtree_eval_metrics = JsonGet(
        step=dtree_step_eval,
        property_file=dtree_evaluation_report,
        json_path="regression_metrics.r2s.value",  # This should follow the structure of your report_dict defined in the evaluate.py file.
    )

    # Register model step that will be conditionally executed
    dtree_step_register = RegisterModel(
        name="DTreeReg",
        estimator=dtree_train,
        model_data=dtree_step_tuning.get_top_model_s3_uri(top_k=0, s3_bucket=model_bucket_key),
        content_types=["text/csv"],
        response_types=["text/csv"],
        inference_instances=["ml.t2.medium", "ml.m5.large"],
        transform_instances=["ml.m5.large"],
        model_package_group_name=model_package_group_name,
        approval_status=model_approval_status,
        model_metrics=dtree_model_metrics,
    )

    # Register model step that will be conditionally executed
    xgb_step_register = RegisterModel(
        name="XGBReg",
        estimator=xgb_train,
        model_data=xgb_step_tuning.get_top_model_s3_uri(top_k=0, s3_bucket=model_bucket_key),
        content_types=["text/csv"],
        response_types=["text/csv"],
        inference_instances=["ml.t2.medium", "ml.m5.large"],
        transform_instances=["ml.m5.large"],
        model_package_group_name=model_package_group_name,
        approval_status=model_approval_status,
        model_metrics=xgb_model_metrics,
    )

    # Condition step for evaluating model quality and branching execution
    cond_lte = ConditionGreaterThanOrEqualTo(  # You can change the condition here
        left=JsonGet(
            step=dtree_step_eval,
            property_file=dtree_evaluation_report,
            json_path="regression_metrics.r2s.value",  # This should follow the structure of your report_dict defined in the evaluate.py file.
        ),
        right=JsonGet(
            step=xgb_step_eval,
            property_file=xgb_evaluation_report,
            json_path="regression_metrics.r2s.value",  # This should follow the structure of your report_dict defined in the evaluate.py file.
        ),  # You can change the threshold here
    )

    step_cond = ConditionStep(
        name="AccuracyCond",
        conditions=[cond_lte],
        if_steps=[dtree_step_register],
        else_steps=[xgb_step_register],
    )
    create_date = time.strftime("%Y-%m-%d-%H-%M-%S")

    # Pipeline instance
    pipeline = Pipeline(
        name=pipeline_name,
        parameters=[
            processing_instance_type,
            processing_instance_count,
            training_instance_type,
            model_approval_status,
            input_data
        ],
        pipeline_experiment_config=PipelineExperimentConfig(
            pipeline_name + "-" + create_date, "restate-{}".format(create_date)
        ),
        steps=[
            data_wrangler_step,
            step_process,
            dtree_step_tuning,
            xgb_step_tuning,
            dtree_step_eval,
            xgb_step_eval,
            step_cond,
        ],
        sagemaker_session=sagemaker_session,
    )
    return pipeline
Ejemplo n.º 10
0
def get_pipeline(
    region,
    role=None,
    default_bucket=None,
    model_package_group_name="AbalonePackageGroup",
    pipeline_name="AbalonePipeline",
    base_job_prefix="Abalone",
):
    """Gets a SageMaker ML Pipeline instance working with on abalone data.

    Args:
        region: AWS region to create and run the pipeline.
        role: IAM role to create and run steps and pipeline.
        default_bucket: the bucket to use for storing the artifacts

    Returns:
        an instance of a pipeline
    """
    sagemaker_session = get_session(region, default_bucket)
    if role is None:
        role = sagemaker.session.get_execution_role(sagemaker_session)

    # Create cache configuration
    cache_config = CacheConfig(enable_caching=True, expire_after="T30m")

    # Create SKlean processor object
    sklearn_processor = SKLearnProcessor(
        framework_version="0.20.0",
        role=role,
        instance_type=processing_instance_type,
        instance_count=processing_instance_count,
        base_job_name="credit-processing-job"
    )

    # Use the sklearn_processor in a Sagemaker pipelines ProcessingStep
    step_preprocess_data = ProcessingStep(
        name="PreprocessCreditData",
        processor=sklearn_processor,
        cache_config=cache_config,
        inputs=[
          ProcessingInput(source=input_data, destination="/opt/ml/processing/input"),  
        ],
        outputs=[
            ProcessingOutput(output_name="train", source="/opt/ml/processing/output/train"),
            ProcessingOutput(output_name="validation", source="/opt/ml/processing/output/validation"),
            ProcessingOutput(output_name="test", source="/opt/ml/processing/output/test"),
            ProcessingOutput(output_name="baseline_with_headers", source="/opt/ml/processing/output/baseline")
        ],
        code=os.path.join(BASE_DIR, "preprocessing.py"),
    )


    # Where to store the trained model
    model_path = f"s3://{default_bucket}/CreditTrain"

    # Fetch container to use for training
    image_uri = sagemaker.image_uris.retrieve(
        framework="xgboost",
        region=region,
        version="1.2-2",
        py_version="py3",
        instance_type=training_instance_type,
    )

    # Create XGBoost estimator object
    xgb_estimator = Estimator(
        image_uri=image_uri,
        instance_type=training_instance_type,
        instance_count=1,
        output_path=model_path,
        role=role,
        disable_profiler=True,
    )

    # Specify hyperparameters
    xgb_estimator.set_hyperparameters(max_depth=5,
                            eta=0.2,
                            gamma=4,
                            min_child_weight=6,
                            subsample=0.8,
                            objective='binary:logistic',
                            num_round=25)

    # Use the xgb_estimator in a Sagemaker pipelines ProcessingStep. 
    # NOTE how the input to the training job directly references the output of the previous step.
    step_train_model = TrainingStep(
        name="TrainCreditModel",
        estimator=xgb_estimator,
        cache_config=cache_config,
        inputs={
            "train": TrainingInput(
                s3_data=step_preprocess_data.properties.ProcessingOutputConfig.Outputs[
                    "train"
                ].S3Output.S3Uri,
                content_type="text/csv"
            ),
            "validation": TrainingInput(
                s3_data=step_preprocess_data.properties.ProcessingOutputConfig.Outputs[
                    "validation"
                ].S3Output.S3Uri,
                content_type="text/csv"
            )
        },
    )

    # Create ScriptProcessor object.
    evaluate_model_processor = ScriptProcessor(
        image_uri=image_uri,
        command=["python3"],
        instance_type=processing_instance_type,
        instance_count=1,
        base_job_name="script-credit-eval",
        role=role,
    )

    # Create a PropertyFile
    # We use a PropertyFile to be able to reference outputs from a processing step, for instance to use in a condition step, which we'll see later on.
    # For more information, visit https://docs.aws.amazon.com/sagemaker/latest/dg/build-and-manage-propertyfile.html
    evaluation_report = PropertyFile(
        name="EvaluationReport",
        output_name="evaluation",
        path="evaluation.json"
    )

    # Use the evaluate_model_processor in a Sagemaker pipelines ProcessingStep. 
    step_evaluate_model = ProcessingStep(
        name="EvaluateCreditModel",
        processor=evaluate_model_processor,
        cache_config=cache_config,
        inputs=[
            ProcessingInput(
                source=step_train_model.properties.ModelArtifacts.S3ModelArtifacts,
                destination="/opt/ml/processing/model"
            ),
            ProcessingInput(
                source=step_preprocess_data.properties.ProcessingOutputConfig.Outputs[
                    "test"
                ].S3Output.S3Uri,
                destination="/opt/ml/processing/test"
            )
        ],
        outputs=[
            ProcessingOutput(output_name="evaluation", source="/opt/ml/processing/evaluation"),
        ],
        code=os.path.join(BASE_DIR, "evaluation.py"),
        property_files=[evaluation_report],
    )


    model_metrics = ModelMetrics(
        model_statistics=MetricsSource(
            s3_uri="{}/evaluation.json".format(
                step_evaluate_model.arguments["ProcessingOutputConfig"]["Outputs"][0]["S3Output"]["S3Uri"]
            ),
            content_type="application/json"
        )
    )

    # Crete a RegisterModel step, which registers your model with Sagemaker Model Registry.
    step_register_model = RegisterModel(
        name="RegisterCreditModel",
        estimator=xgb_estimator,
        model_data=step_train_model.properties.ModelArtifacts.S3ModelArtifacts,
        content_types=["text/csv"],
        response_types=["text/csv"],
        inference_instances=["ml.t2.medium", "ml.m5.xlarge", "ml.m5.large"],
        transform_instances=["ml.m5.xlarge"],
        model_package_group_name=model_package_group_name,
        approval_status=model_approval_status,
        model_metrics=model_metrics
    )


    # Create Processor object using the model monitor image
    baseline_processor = sagemaker.processing.Processor(
        base_job_name="credit-risk-baseline-processor",
        image_uri=sagemaker.image_uris.retrieve(framework='model-monitor', region='eu-west-1'),
        role=role,
        instance_count=1,
        instance_type=processing_instance_type,
        env = {
            "dataset_format": "{\"csv\": {\"header\": true} }",
            "dataset_source": "/opt/ml/processing/sm_input",
            "output_path": "/opt/ml/processing/sm_output",
            "publish_cloudwatch_metrics": "Disabled"
        }
    )

    # Create a Sagemaker Pipeline step, using the baseline_processor.
    step_create_data_baseline = ProcessingStep(
        name="CreateModelQualityBaseline",
        processor=baseline_processor,
        cache_config=cache_config,
        inputs=[
            ProcessingInput(
                source=step_preprocess_data.properties.ProcessingOutputConfig.Outputs[
                    "baseline_with_headers"
                ].S3Output.S3Uri,
                destination="/opt/ml/processing/sm_input",
            )
        ],
        outputs=[
            ProcessingOutput(
                source="/opt/ml/processing/sm_output",
                destination="s3://{}/{}/baseline".format(default_bucket, base_job_prefix),
                output_name="baseline_result",
            )
        ],
    )



    # Create Condition
    cond_gte = ConditionGreaterThanOrEqualTo(
        left=JsonGet(
            step=step_evaluate_model,
            property_file=evaluation_report,
            json_path="binary_classification_metrics.accuracy.value"
        ),
        right=0.7
    )

    # Create a Sagemaker Pipelines ConditionStep, using the condition we just created.
    step_cond = ConditionStep(
        name="AccuracyCondition",
        conditions=[cond_gte],
        if_steps=[step_register_model],
        else_steps=[], 
    )

    from sagemaker.workflow.pipeline import Pipeline

    # Create a Sagemaker Pipeline
    pipeline = Pipeline(
        name=pipeline_name,
        parameters=[
            processing_instance_type, 
            processing_instance_count,
            training_instance_type,
            model_approval_status,
            input_data,
        ],
        steps=[step_preprocess_data, step_train_model, step_evaluate_model, step_create_data_baseline, step_cond],
    )
    
    return pipeline
def get_pipeline(
    region,
    security_group_ids,
    subnets,
    processing_role=None,
    training_role=None,
    data_bucket=None,
    model_bucket=None,
    model_package_group_name="AbalonePackageGroup",
    pipeline_name="AbalonePipeline",
    base_job_prefix="Abalone",

):
    """Gets a SageMaker ML Pipeline instance working with on abalone data.

    Args:
        region: AWS region to create and run the pipeline.
        processing_role: IAM role to create and run processing steps
        training_role: IAM role to create and run training steps
        data_bucket: the bucket to use for storing the artifacts

    Returns:
        an instance of a pipeline
    """
    sagemaker_session = get_session(region, data_bucket)

    if processing_role is None:
        processing_role = sagemaker.session.get_execution_role(sagemaker_session)
    if training_role is None:
        training_role = sagemaker.session.get_execution_role(sagemaker_session)
    if model_bucket is None:
        model_bucket = sagemaker_session.default_bucket()

    print(f"Creating the pipeline '{pipeline_name}':")
    print(f"Parameters:{region}\n{security_group_ids}\n{subnets}\n{processing_role}\n\
    {training_role}\n{data_bucket}\n{model_bucket}\n{model_package_group_name}\n\
    {pipeline_name}\n{base_job_prefix}")

    # parameters for pipeline execution
    processing_instance_count = ParameterInteger(name="ProcessingInstanceCount", default_value=1)
    processing_instance_type = ParameterString(
        name="ProcessingInstanceType", default_value="ml.m5.xlarge"
    )
    training_instance_type = ParameterString(
        name="TrainingInstanceType", default_value="ml.m5.xlarge"
    )
    model_approval_status = ParameterString(
        name="ModelApprovalStatus", default_value="PendingManualApproval"
    )
    input_data = ParameterString(
        name="InputDataUrl",
        default_value=f"s3://{sagemaker_session.default_bucket()}/datasets/abalone-dataset.csv",
    )

    # configure network for encryption, network isolation and VPC configuration
    # Since the preprocessor job takes the data from S3, enable_network_isolation must be set to False
    # see https://github.com/aws/amazon-sagemaker-examples/issues/1689
    network_config = NetworkConfig(
        enable_network_isolation=False, 
        security_group_ids=security_group_ids.split(","),
        subnets=subnets.split(","),
        encrypt_inter_container_traffic=True)
    
    # processing step for feature engineering
    sklearn_processor = SKLearnProcessor(
        framework_version="0.23-1",
        instance_type=processing_instance_type,
        instance_count=processing_instance_count,
        base_job_name=f"{base_job_prefix}/sklearn-abalone-preprocess",
        sagemaker_session=sagemaker_session,
        role=processing_role,
        network_config=network_config
    )
    
    step_process = ProcessingStep(
        name="PreprocessAbaloneData",
        processor=sklearn_processor,
        outputs=[
            ProcessingOutput(output_name="train", source="/opt/ml/processing/train"),
            ProcessingOutput(output_name="validation", source="/opt/ml/processing/validation"),
            ProcessingOutput(output_name="test", source="/opt/ml/processing/test"),
        ],
        code=os.path.join(BASE_DIR, "preprocess.py"),
        job_arguments=["--input-data", input_data],
    )

    # training step for generating model artifacts
    model_path = f"s3://{model_bucket}/{base_job_prefix}/AbaloneTrain"
    image_uri = sagemaker.image_uris.retrieve(
        framework="xgboost",
        region=region,
        version="1.0-1",
        py_version="py3",
        instance_type=training_instance_type,
    )
    xgb_train = Estimator(
        image_uri=image_uri,
        instance_type=training_instance_type,
        instance_count=1,
        output_path=model_path,
        base_job_name=f"{base_job_prefix}/abalone-train",
        sagemaker_session=sagemaker_session,
        role=training_role,
        subnets=network_config.subnets,
        security_group_ids=network_config.security_group_ids,
        encrypt_inter_container_traffic=True,
        enable_network_isolation=False
    )
    xgb_train.set_hyperparameters(
        objective="reg:linear",
        num_round=50,
        max_depth=5,
        eta=0.2,
        gamma=4,
        min_child_weight=6,
        subsample=0.7,
        silent=0,
    )
    
    step_train = TrainingStep(
        name="TrainAbaloneModel",
        estimator=xgb_train,
        inputs={
            "train": TrainingInput(
                s3_data=step_process.properties.ProcessingOutputConfig.Outputs[
                    "train"
                ].S3Output.S3Uri,
                content_type="text/csv",
            ),
            "validation": TrainingInput(
                s3_data=step_process.properties.ProcessingOutputConfig.Outputs[
                    "validation"
                ].S3Output.S3Uri,
                content_type="text/csv",
            ),
        },
    )

    # processing step for evaluation
    script_eval = ScriptProcessor(
        image_uri=image_uri,
        command=["python3"],
        instance_type=processing_instance_type,
        instance_count=1,
        base_job_name=f"{base_job_prefix}/script-abalone-eval",
        sagemaker_session=sagemaker_session,
        role=processing_role,
        network_config=network_config
    )
    
    evaluation_report = PropertyFile(
        name="AbaloneEvaluationReport",
        output_name="evaluation",
        path="evaluation.json",
    )
    step_eval = ProcessingStep(
        name="EvaluateAbaloneModel",
        processor=script_eval,
        inputs=[
            ProcessingInput(
                source=step_train.properties.ModelArtifacts.S3ModelArtifacts,
                destination="/opt/ml/processing/model",
            ),
            ProcessingInput(
                source=step_process.properties.ProcessingOutputConfig.Outputs[
                    "test"
                ].S3Output.S3Uri,
                destination="/opt/ml/processing/test",
            ),
        ],
        outputs=[
            ProcessingOutput(output_name="evaluation", source="/opt/ml/processing/evaluation"),
        ],
        code=os.path.join(BASE_DIR, "evaluate.py"),
        property_files=[evaluation_report],
    )

    # register model step that will be conditionally executed
    model_metrics = ModelMetrics(
        model_statistics=MetricsSource(
            s3_uri="{}/evaluation.json".format(
                step_eval.arguments["ProcessingOutputConfig"]["Outputs"][0]["S3Output"]["S3Uri"]
            ),
            content_type="application/json"
        )
    )

    """
    There is a bug in RegisterModel implementation
    The RegisterModel step is implemented in the SDK as two steps, a _RepackModelStep and a _RegisterModelStep. 
    The _RepackModelStep runs a SKLearn training step in order to repack the model.tar.gz to include any custom inference code in the archive. 
    The _RegisterModelStep then registers the repacked model.
    
    The problem is that the _RepackModelStep does not propagate VPC configuration from the Estimator object:
    https://github.com/aws/sagemaker-python-sdk/blob/cdb633b3ab02398c3b77f5ecd2c03cdf41049c78/src/sagemaker/workflow/_utils.py#L88

    This cause the AccessDenied exception because repacker cannot access S3 bucket (all access which is not via VPC endpoint is bloked by the bucket policy)
    
    The issue is opened against SageMaker python SDK: https://github.com/aws/sagemaker-python-sdk/issues/2302
    """

    vpc_config = {
        "Subnets":network_config.subnets,
        "SecurityGroupIds":network_config.security_group_ids
    }

    step_register = RegisterModel(
        name="RegisterAbaloneModel",
        estimator=xgb_train,
        model_data=step_train.properties.ModelArtifacts.S3ModelArtifacts,
        content_types=["text/csv"],
        response_types=["text/csv"],
        inference_instances=["ml.t2.medium", "ml.m5.large"],
        transform_instances=["ml.m5.large"],
        model_package_group_name=model_package_group_name,
        approval_status=model_approval_status,
        model_metrics=model_metrics,
        vpc_config_override=vpc_config
    )

    # condition step for evaluating model quality and branching execution
    cond_lte = ConditionLessThanOrEqualTo(
        left=JsonGet(
            step=step_eval,
            property_file=evaluation_report,
            json_path="regression_metrics.mse.value"
        ),
        right=6.0,
    )
    step_cond = ConditionStep(
        name="CheckMSEAbaloneEvaluation",
        conditions=[cond_lte],
        if_steps=[step_register],
        else_steps=[],
    )

    # pipeline instance
    pipeline = Pipeline(
        name=pipeline_name,
        parameters=[
            processing_instance_type,
            processing_instance_count,
            training_instance_type,
            model_approval_status,
            input_data,
        ],
        steps=[step_process, step_train, step_eval, step_cond],
        sagemaker_session=sagemaker_session,
    )
    return pipeline
Ejemplo n.º 12
0
def get_pipeline(
    region,
    sagemaker_session,
    role=None,
    default_bucket=None,
    model_package_group_name="sts-sklearn-grp",
    pipeline_name="stsPipeline",
    base_job_prefix="sts",
) -> Pipeline:
    """Gets a SageMaker ML Pipeline instance working with on sts data.

    Args:
        region: AWS region to create and run the pipeline.
        role: IAM role to create and run steps and pipeline.
        default_bucket: the bucket to use for storing the artifacts

    Returns:
        an instance of a pipeline
    """
    """
        Instance types allowed:
        
        ml.r5.12xlarge, ml.m5.4xlarge, ml.p2.xlarge, ml.m4.16xlarge, ml.r5.24xlarge, 
        ml.t3.xlarge, ml.r5.16xlarge, ml.m5.large, ml.p3.16xlarge, ml.p2.16xlarge, 
        ml.c4.2xlarge, ml.c5.2xlarge, ml.c4.4xlarge, ml.c5.4xlarge, ml.c4.8xlarge, 
        ml.c5.9xlarge, ml.c5.xlarge, ml.c4.xlarge, ml.t3.2xlarge, ml.t3.medium, 
        ml.c5.18xlarge, ml.r5.2xlarge, ml.p3.2xlarge, ml.m5.xlarge, ml.m4.10xlarge, 
        ml.r5.4xlarge, ml.m5.12xlarge, ml.m4.xlarge, ml.t3.large, ml.m5.24xlarge, 
        ml.m4.2xlarge, ml.m5.2xlarge, ml.p2.8xlarge, ml.r5.8xlarge, ml.r5.xlarge, 
        ml.r5.large, ml.p3.8xlarge, ml.m4.4xlarge

        see
        https://aws.amazon.com/blogs/machine-learning/right-sizing-resources-and-avoiding-unnecessary-costs-in-amazon-sagemaker/
    """
    sagemaker_session = get_session(region, default_bucket)
    if role is None:
        role = sagemaker.session.get_execution_role(sagemaker_session)

    # parameters for pipeline execution
    processing_instance_count = ParameterInteger(
        name="ProcessingInstanceCount", default_value=1)
    processing_instance_type = ParameterString(name="ProcessingInstanceType",
                                               default_value="ml.m5.xlarge")

    # as of free tier of 50 hours of m4.xlarge or m5.xlarge instances
    training_instance_type = ParameterString(name="TrainingInstanceType",
                                             default_value="ml.m5.xlarge")
    model_approval_status = ParameterString(name="ModelApprovalStatus",
                                            default_value="Approved")

    # preprocess

    # preprocess input data
    input_data = ParameterString(
        name="InputDataUrl",
        default_value=f"s3://sts-datwit-dataset/stsmsrpc.txt",
    )

    # processing step for feature engineering
    sklearn_processor = SKLearnProcessor(
        framework_version="0.23-1",
        instance_type=processing_instance_type,
        instance_count=processing_instance_count,
        base_job_name=f"{base_job_prefix}/sklearn-sts-preprocess",
        sagemaker_session=sagemaker_session,
        role=role,
    )

    step_preprocess = ProcessingStep(
        name="PreprocessSTSData",
        processor=sklearn_processor,
        outputs=[
            ProcessingOutput(output_name="train",
                             source="/opt/ml/processing/train"),
            ProcessingOutput(output_name="validation",
                             source="/opt/ml/processing/validation"),
            ProcessingOutput(output_name="test",
                             source="/opt/ml/processing/test"),
        ],
        code=os.path.join(BASE_DIR, "preprocess.py"),
        job_arguments=["--input-data", input_data],
    )

    # training step for generating model artifacts
    model_path = f"s3://{sagemaker_session.default_bucket()}/{base_job_prefix}/stsTrain"
    image_uri = sagemaker.image_uris.retrieve(
        framework="sklearn",
        region=region,
        version="0.23-1",
        py_version="py3",
        instance_type=training_instance_type,
    )

    sklearn_estimator = SKLearn(
        entry_point='training.py',
        source_dir=BASE_DIR,
        instance_type=training_instance_type,
        instance_count=1,
        output_path=model_path,
        framework_version="0.23-1",
        py_version="py3",
        base_job_name=f"{base_job_prefix}/sts-train",
        sagemaker_session=sagemaker_session,
        role=role,
    )

    step_train = TrainingStep(
        name="TrainSTSModel",
        estimator=sklearn_estimator,
        inputs={
            "train":
            TrainingInput(
                s3_data=step_preprocess.properties.ProcessingOutputConfig.
                Outputs["train"].S3Output.S3Uri,
                content_type="text/csv",
            ),
            "validation":
            TrainingInput(
                s3_data=step_preprocess.properties.ProcessingOutputConfig.
                Outputs["validation"].S3Output.S3Uri,
                content_type="text/csv",
            ),
        },
    )

    # processing step for evaluation
    script_eval = ScriptProcessor(
        image_uri=image_uri,
        command=["python3"],
        instance_type=processing_instance_type,
        instance_count=1,
        base_job_name=f"{base_job_prefix}/script-sts-eval",
        sagemaker_session=sagemaker_session,
        role=role,
    )
    evaluation_report = PropertyFile(
        name="stsEvaluationReport",
        output_name="evaluation",
        path="evaluation.json",
    )
    step_eval = ProcessingStep(
        name="EvaluateSTSModel",
        processor=script_eval,
        inputs=[
            ProcessingInput(
                source=step_train.properties.ModelArtifacts.S3ModelArtifacts,
                destination="/opt/ml/processing/model",
            ),
            ProcessingInput(
                source=step_preprocess.properties.ProcessingOutputConfig.
                Outputs["test"].S3Output.S3Uri,
                destination="/opt/ml/processing/test",
            ),
        ],
        outputs=[
            ProcessingOutput(output_name="evaluation",
                             source="/opt/ml/processing/evaluation"),
        ],
        code=os.path.join(BASE_DIR, "evaluate.py"),
        property_files=[evaluation_report],
    )

    # setup model quality monitoring baseline data
    script_process_baseline_data = ScriptProcessor(
        image_uri=image_uri,
        command=["python3"],
        instance_type=processing_instance_type,
        instance_count=1,
        base_job_name=f"{base_job_prefix}/baseline",
        sagemaker_session=sagemaker_session,
        role=role,
    )

    step_proccess_baseline_data = ProcessingStep(
        name="SetupMonitoringData",
        processor=script_process_baseline_data,
        inputs=[
            ProcessingInput(
                source=step_train.properties.ModelArtifacts.S3ModelArtifacts,
                destination="/opt/ml/processing/model",
            ),
            ProcessingInput(
                source=step_preprocess.properties.ProcessingOutputConfig.
                Outputs["validation"].S3Output.S3Uri,
                destination="/opt/ml/processing/validation",
            ),
        ],
        outputs=[
            ProcessingOutput(output_name="validate",
                             source="/opt/ml/processing/validate"),
        ],
        code=os.path.join(BASE_DIR, "baseline.py"))
    # ---

    # register model step that will be conditionally executed
    model_metrics = ModelMetrics(
        model_statistics=MetricsSource(s3_uri="{}/evaluation.json".format(
            step_eval.arguments["ProcessingOutputConfig"]["Outputs"][0]
            ["S3Output"]["S3Uri"]),
                                       content_type="application/json"))

    step_register = RegisterModel(
        name="RegisterSTSModel",
        estimator=sklearn_estimator,
        model_data=step_train.properties.ModelArtifacts.S3ModelArtifacts,
        content_types=["text/csv"],
        response_types=["text/csv"],
        inference_instances=["ml.m5.xlarge"],
        transform_instances=["ml.m5.xlarge"],
        model_package_group_name=model_package_group_name,
        approval_status=model_approval_status,
        model_metrics=model_metrics,
    )

    # condition step for evaluating model quality and branching execution
    cond_lte = ConditionLessThanOrEqualTo(
        left=JsonGet(step=step_eval,
                     property_file=evaluation_report,
                     json_path="regression_metrics.mse.value"),
        right=6.0,
    )
    step_cond = ConditionStep(
        name="CheckMSESTSEvaluation",
        conditions=[cond_lte],
        if_steps=[step_register, step_proccess_baseline_data],
        # if_steps=[step_register],
        else_steps=[],
    )

    # pipeline instance
    pipeline = Pipeline(
        name=pipeline_name,
        parameters=[
            processing_instance_type,
            processing_instance_count,
            training_instance_type,
            model_approval_status,
            input_data,
        ],
        steps=[step_preprocess, step_train, step_eval, step_cond],
        sagemaker_session=sagemaker_session,
    )
    return pipeline
Ejemplo n.º 13
0
def test_end_to_end_pipeline_successful_execution(
    sagemaker_session, region_name, role, pipeline_name, wait=False
):
    model_package_group_name = f"{pipeline_name}ModelPackageGroup"
    data_path = os.path.join(DATA_DIR, "workflow")
    default_bucket = sagemaker_session.default_bucket()

    # download the input data
    local_input_path = os.path.join(data_path, "abalone-dataset.csv")
    s3 = sagemaker_session.boto_session.resource("s3")
    s3.Bucket(f"sagemaker-servicecatalog-seedcode-{region_name}").download_file(
        "dataset/abalone-dataset.csv", local_input_path
    )

    # # upload the input data to our bucket
    base_uri = f"s3://{default_bucket}/{pipeline_name}"
    with open(local_input_path) as data:
        body = data.read()
        input_data_uri = S3Uploader.upload_string_as_file_body(
            body=body,
            desired_s3_uri=f"{base_uri}/abalone-dataset.csv",
            sagemaker_session=sagemaker_session,
        )

    # download batch transform data
    local_batch_path = os.path.join(data_path, "abalone-dataset-batch")
    s3.Bucket(f"sagemaker-servicecatalog-seedcode-{region_name}").download_file(
        "dataset/abalone-dataset-batch", local_batch_path
    )

    # upload the batch transform data
    with open(local_batch_path) as data:
        body = data.read()
        batch_data_uri = S3Uploader.upload_string_as_file_body(
            body=body,
            desired_s3_uri=f"{base_uri}/abalone-dataset-batch",
            sagemaker_session=sagemaker_session,
        )

    # define parameters
    processing_instance_count = ParameterInteger(name="ProcessingInstanceCount", default_value=1)
    processing_instance_type = ParameterString(
        name="ProcessingInstanceType", default_value="ml.m5.xlarge"
    )
    training_instance_type = ParameterString(
        name="TrainingInstanceType", default_value="ml.m5.xlarge"
    )
    model_approval_status = ParameterString(name="ModelApprovalStatus", default_value="Approved")
    input_data = ParameterString(
        name="InputData",
        default_value=input_data_uri,
    )
    batch_data = ParameterString(
        name="BatchData",
        default_value=batch_data_uri,
    )

    # define processing step
    framework_version = "0.23-1"
    sklearn_processor = SKLearnProcessor(
        framework_version=framework_version,
        instance_type=processing_instance_type,
        instance_count=processing_instance_count,
        base_job_name=f"{pipeline_name}-process",
        role=role,
        sagemaker_session=sagemaker_session,
    )
    step_process = ProcessingStep(
        name="AbaloneProcess",
        processor=sklearn_processor,
        inputs=[
            ProcessingInput(source=input_data, destination="/opt/ml/processing/input"),
        ],
        outputs=[
            ProcessingOutput(output_name="train", source="/opt/ml/processing/train"),
            ProcessingOutput(output_name="validation", source="/opt/ml/processing/validation"),
            ProcessingOutput(output_name="test", source="/opt/ml/processing/test"),
        ],
        code=os.path.join(data_path, "abalone/preprocessing.py"),
    )

    # define training step
    model_path = f"s3://{default_bucket}/{pipeline_name}Train"
    image_uri = image_uris.retrieve(
        framework="xgboost",
        region=region_name,
        version="1.0-1",
        py_version="py3",
        instance_type=training_instance_type,
    )
    xgb_train = Estimator(
        image_uri=image_uri,
        instance_type=training_instance_type,
        instance_count=1,
        output_path=model_path,
        role=role,
        sagemaker_session=sagemaker_session,
    )
    xgb_train.set_hyperparameters(
        objective="reg:linear",
        num_round=50,
        max_depth=5,
        eta=0.2,
        gamma=4,
        min_child_weight=6,
        subsample=0.7,
        silent=0,
    )
    step_train = TrainingStep(
        name="AbaloneTrain",
        estimator=xgb_train,
        inputs={
            "train": TrainingInput(
                s3_data=step_process.properties.ProcessingOutputConfig.Outputs[
                    "train"
                ].S3Output.S3Uri,
                content_type="text/csv",
            ),
            "validation": TrainingInput(
                s3_data=step_process.properties.ProcessingOutputConfig.Outputs[
                    "validation"
                ].S3Output.S3Uri,
                content_type="text/csv",
            ),
        },
    )

    # define evaluation step
    script_eval = ScriptProcessor(
        image_uri=image_uri,
        command=["python3"],
        instance_type=processing_instance_type,
        instance_count=1,
        base_job_name=f"{pipeline_name}-eval",
        role=role,
        sagemaker_session=sagemaker_session,
    )
    evaluation_report = PropertyFile(
        name="EvaluationReport", output_name="evaluation", path="evaluation.json"
    )
    step_eval = ProcessingStep(
        name="AbaloneEval",
        processor=script_eval,
        inputs=[
            ProcessingInput(
                source=step_train.properties.ModelArtifacts.S3ModelArtifacts,
                destination="/opt/ml/processing/model",
            ),
            ProcessingInput(
                source=step_process.properties.ProcessingOutputConfig.Outputs[
                    "test"
                ].S3Output.S3Uri,
                destination="/opt/ml/processing/test",
            ),
        ],
        outputs=[
            ProcessingOutput(output_name="evaluation", source="/opt/ml/processing/evaluation"),
        ],
        code=os.path.join(data_path, "abalone/evaluation.py"),
        property_files=[evaluation_report],
    )

    # define create model step
    model = Model(
        image_uri=image_uri,
        model_data=step_train.properties.ModelArtifacts.S3ModelArtifacts,
        sagemaker_session=sagemaker_session,
        role=role,
    )
    inputs = CreateModelInput(
        instance_type="ml.m5.large",
        accelerator_type="ml.eia1.medium",
    )
    step_create_model = CreateModelStep(
        name="AbaloneCreateModel",
        model=model,
        inputs=inputs,
    )

    # define transform step
    transformer = Transformer(
        model_name=step_create_model.properties.ModelName,
        instance_type="ml.m5.xlarge",
        instance_count=1,
        output_path=f"s3://{default_bucket}/{pipeline_name}Transform",
        sagemaker_session=sagemaker_session,
    )
    step_transform = TransformStep(
        name="AbaloneTransform",
        transformer=transformer,
        inputs=TransformInput(data=batch_data),
    )

    # define register model step
    model_metrics = ModelMetrics(
        model_statistics=MetricsSource(
            s3_uri="{}/evaluation.json".format(
                step_eval.arguments["ProcessingOutputConfig"]["Outputs"][0]["S3Output"]["S3Uri"]
            ),
            content_type="application/json",
        )
    )
    step_register = RegisterModel(
        name="AbaloneRegisterModel",
        estimator=xgb_train,
        model_data=step_train.properties.ModelArtifacts.S3ModelArtifacts,
        content_types=["text/csv"],
        response_types=["text/csv"],
        inference_instances=["ml.t2.medium", "ml.m5.xlarge"],
        transform_instances=["ml.m5.xlarge"],
        model_package_group_name=model_package_group_name,
        approval_status=model_approval_status,
        model_metrics=model_metrics,
    )

    # define condition step
    cond_lte = ConditionLessThanOrEqualTo(
        left=JsonGet(
            step_name=step_eval.name,
            property_file=evaluation_report,
            json_path="regression_metrics.mse.value",
        ),
        right=20.0,
    )

    step_cond = ConditionStep(
        name="AbaloneMSECond",
        conditions=[cond_lte],
        if_steps=[step_register, step_create_model, step_transform],
        else_steps=[],
    )

    # define pipeline
    pipeline = Pipeline(
        name=pipeline_name,
        parameters=[
            processing_instance_type,
            processing_instance_count,
            training_instance_type,
            model_approval_status,
            input_data,
            batch_data,
        ],
        steps=[step_process, step_train, step_eval, step_cond],
        sagemaker_session=sagemaker_session,
    )

    pipeline.create(role)
    execution = pipeline.start()
    execution_arn = execution.arn

    if wait:
        execution.wait()

    return execution_arn
Ejemplo n.º 14
0
def get_pipeline(
    region,
    role=None,
    default_bucket=None,
    model_package_group_name="sagemaker-group-insurance",
    pipeline_name="sagemaker-pipeline-insurance",
    base_job_prefix="sagemaker-featurestore-insurance",
):
    """Gets a SageMaker ML Pipeline instance working with on WIP data.

    Args:
        region: AWS region to create and run the pipeline.
        role: IAM role to create and run steps and pipeline.
        default_bucket: the bucket to use for storing the artifacts

    Returns:
        an instance of a pipeline
    """
    sagemaker_session = get_session(region, default_bucket)
    if role is None:
        role = sagemaker.session.get_execution_role(sagemaker_session)

    # parameters for pipeline execution
    processing_instance_count = ParameterInteger(name="ProcessingInstanceCount", default_value=1)
    processing_instance_type = ParameterString(
        name="ProcessingInstanceType", default_value="ml.m5.xlarge"
    )
    training_instance_type = ParameterString(
        name="TrainingInstanceType", default_value="ml.m5.xlarge"
    )
    model_approval_status = ParameterString(
        name="ModelApprovalStatus", default_value="Approved"
    )

    # processing step for feature engineering
    sklearn_processor = SKLearnProcessor(
        framework_version="0.23-1",
        instance_type=processing_instance_type,
        instance_count=processing_instance_count,
        base_job_name=f"{base_job_prefix}/sklearn-insurance-preprocess",
        sagemaker_session=sagemaker_session,
        role=role,
    )
    step_process = ProcessingStep(
        name="PreprocessInsuranceData",
        processor=sklearn_processor,
        outputs=[
            ProcessingOutput(output_name="train", source="/opt/ml/processing/train"),
            ProcessingOutput(output_name="validation", source="/opt/ml/processing/validation"),
            ProcessingOutput(output_name="test", source="/opt/ml/processing/test"),
        ],
        code=os.path.join(BASE_DIR, "preprocess.py"),
        job_arguments=["--input_dataset_1", "41214", 
                       "--input_dataset_2", "41215",],
    )
    
    '''
    # feature store step
    feature_path = 's3://' + default_bucket+'/'+base_job_prefix + '/features'
    image_uri = sagemaker.image_uris.retrieve(
        framework="xgboost",
        region=region,
        version="1.0-1",
        py_version="py3",
        instance_type=training_instance_type,
    )
    feature_processor = ScriptProcessor(
        image_uri=image_uri,
        command=["python3"],
        instance_type=processing_instance_type,
        instance_count=1,
        base_job_name=f"{base_job_prefix}/script-insurance-feature-store",
        sagemaker_session=sagemaker_session,
        role=role,
    )
    step_feature = ProcessingStep(
        name="FeatureStoreInsuranceData",
        processor=feature_processor,
        outputs=[
            ProcessingOutput(output_name="train", source="/opt/ml/processing/training_input"),
        ],
        code=os.path.join(BASE_DIR, "feature_store.py"),
        job_arguments=["feature_s3_url", feature_path, "--feature_group_name", "sagemaker-featurestore-insurance"],
    )
    '''    

    # training step for generating model artifacts
    model_path = 's3://' + default_bucket+'/'+base_job_prefix + '/features'
    image_uri = sagemaker.image_uris.retrieve(
        framework="xgboost",
        region=region,
        version="1.0-1",
        py_version="py3",
        instance_type=training_instance_type,
    )
    xgb_train = Estimator(
        image_uri=image_uri,
        instance_type=training_instance_type,
        instance_count=1,
        output_path=model_path,
        base_job_name=f"{base_job_prefix}/insurance-train",
        sagemaker_session=sagemaker_session,
        role=role,
    )
    xgb_train.set_hyperparameters(objective = "reg:tweedie",
                                   num_round = 50)        
    step_train = TrainingStep(
        name="TrainAbaloneModel",
        estimator=xgb_train,
        inputs={
            "train": TrainingInput(
                s3_data=step_process.properties.ProcessingOutputConfig.Outputs[
                    "train"
                ].S3Output.S3Uri,
                content_type="text/csv",
            ),
            "validation": TrainingInput(
                s3_data=step_process.properties.ProcessingOutputConfig.Outputs[
                    "validation"
                ].S3Output.S3Uri,
                content_type="text/csv",
            ),
        },
    )

    # processing step for evaluation
    script_eval = ScriptProcessor(
        image_uri=image_uri,
        command=["python3"],
        instance_type=processing_instance_type,
        instance_count=1,
        base_job_name=f"{base_job_prefix}/script-wip-eval",
        sagemaker_session=sagemaker_session,
        role=role,
    )
    evaluation_report = PropertyFile(
        name="WipEvaluationReport",
        output_name="evaluation",
        path="evaluation.json",
    )
    step_eval = ProcessingStep(
        name="EvaluateWipModel",
        processor=script_eval,
        inputs=[
            ProcessingInput(
                source=step_train.properties.ModelArtifacts.S3ModelArtifacts,
                destination="/opt/ml/processing/model",
            ),
            ProcessingInput(
                source=step_process.properties.ProcessingOutputConfig.Outputs[
                    "test"
                ].S3Output.S3Uri,
                destination="/opt/ml/processing/test",
            ),
        ],
        outputs=[
            ProcessingOutput(output_name="evaluation", source="/opt/ml/processing/evaluation"),
        ],
        code=os.path.join(BASE_DIR, "evaluate.py"),
        property_files=[evaluation_report],
    )

    # register model step that will be conditionally executed
    model_metrics = ModelMetrics(
        model_statistics=MetricsSource(
            s3_uri="{}/evaluation.json".format(
                step_eval.arguments["ProcessingOutputConfig"]["Outputs"][0]["S3Output"]["S3Uri"]
            ),
            content_type="application/json"
        )
    )
    step_register = RegisterModel(
        name="register-insurance-model",
        estimator=xgb_train,
        model_data=step_train.properties.ModelArtifacts.S3ModelArtifacts,
        content_types=["text/csv"],
        response_types=["text/csv"],
        inference_instances=["ml.t2.medium", "ml.m5.large"],
        transform_instances=["ml.m5.large"],
        model_package_group_name=model_package_group_name,
        approval_status=model_approval_status,
        model_metrics=model_metrics,
    )

    # condition step for evaluating model quality and branching execution
    cond_lte = ConditionLessThanOrEqualTo(
        left=JsonGet(
            step=step_eval,
            property_file=evaluation_report,
            json_path="regression_metrics.mse.value"
        ),
        right=6.0,
    )
    step_cond = ConditionStep(
        name="CheckMSEWipEvaluation",
        conditions=[cond_lte],
        if_steps=[],
        else_steps=[step_register],
    )

    pipeline = Pipeline(
        name=pipeline_name,
        parameters=[
            processing_instance_type,
            processing_instance_count,
            training_instance_type,
            model_approval_status,
        ],
        steps=[step_process, step_train, step_eval, step_cond],
        sagemaker_session=sagemaker_session,
    )
    return pipeline