Ejemplo n.º 1
0
    def __itti_saliency_map(self, image_src):
        self.__set_timer()
        image = io.imread(image_src)
        print "itti saliency started..."
        s_map = SaliencyMap(image)
        self.__print_timer()
        print "itti saliency done."

        return s_map.map
Ejemplo n.º 2
0
def run(image, mask=None, smoothing=False, show=False, show_now=True):
    if mask is None:
        mask = np.ones_like(image)
        im_orig = image.copy()
    else:
        image, mask = tools.crop_to_bbox(image, mask)
        im_orig = image.copy()
        mean_v = int(image[np.nonzero(mask)].mean())
        image = np.where(mask, image, mean_v)
    mask = mask.astype(np.uint8)

    if smoothing:
        image = tools.smoothing(image)

    rgb_image = cv2.cvtColor(image, cv2.COLOR_BAYER_GR2BGR).astype(np.float32)

    saliency = SaliencyMap(rgb_image)
    saliency_map = saliency.map

    saliency_map *= mask
    im_orig *= mask

    saliency_map = skiexp.rescale_intensity(saliency_map, out_range=(0, 1))

    if show:
        if smoothing:
            plt.subplot(131), plt.imshow(
                im_orig, 'gray', interpolation='nearest'), plt.title('input')
            plt.subplot(132), plt.imshow(
                image, 'gray', interpolation='nearest'), plt.title('smoothed')
            plt.subplot(133), plt.imshow(
                saliency_map, 'gray',
                interpolation='nearest'), plt.title('saliency')
        else:
            plt.subplot(121), plt.imshow(
                im_orig, 'gray', interpolation='nearest'), plt.title('input')
            plt.subplot(122), plt.imshow(
                saliency_map, 'gray',
                interpolation='nearest'), plt.title('saliency')
        if show_now:
            plt.show()

    return im_orig, image, saliency_map
Ejemplo n.º 3
0
    def buildSM(self, gazepath, lblpath):
        '''
		build saliency map from gaze labels
    	'''
        '''
    	# convert black pixels in lbl to white 
    	with open(lblpath, 'r+b') as f:
				with PIL.Image.open(f) as image:
					for width in xrange(image.size[0]):
						for length in xrange(image.size[1]):
							pixel = image.getpixel((width, length))

							if pixel == (0, 0, 0):
								image.putpixel((width, length), (255, 255, 255))
		'''
        oi = OpencvIo()
        gaze = oi.imread(lblpath)
        sm = SaliencyMap(gaze)
        oi.imwrite(sm.map, gazepath)

        # threshold SM
        with open(gazepath, 'r+b') as f:
            with PIL.Image.open(f).convert('RGB') as image:
                for length in xrange(image.size[0]):
                    for width in xrange(image.size[1]):
                        pixel = image.getpixel((length, width))

                        # putpixel() is slow, learn to use paste for single pixel placement if possible
                        if pixel[0] < 50:
                            image.putpixel((length, width), (0, 0, 0))
                        elif 50 <= pixel[0] < 100:
                            image.putpixel((length, width), (100, 100, 100))
                        elif 100 <= pixel[0] < 150:
                            image.putpixel((length, width), (175, 175, 175))
                        else:
                            image.putpixel((length, width), (255, 255, 255))

                image.save(gazepath, image.format)
Ejemplo n.º 4
0
from saliency_map import SaliencyMap
from utils import *
from os import listdir
from os.path import isfile, join
import numpy as np

onlyfiles = [f for f in sorted(listdir('stimuli')) if isfile(join('stimuli', f))]
oi = OpencvIo()
u = Util()

## option 1: using saliency_map.py
for f in onlyfiles:
    maps = 0
    print('Doing saliency map of file {}'.format(f))
    src = oi.imread('stimuli/'+f)
    sm = SaliencyMap(src)
    # np.savetxt('results/'+f+'.txt',sm.map)
    cv.imwrite( 'results/sm'+f, np.uint8(u.normalize_range(sm.map)))
    cv.imwrite( 'results/cmcolor'+f, np.uint8(u.normalize_range(sm.cm.maps['color'])))
    cv.imwrite( 'results/cmintensity'+f, np.uint8(u.normalize_range(sm.cm.maps['intensity'])))
    cv.imwrite( 'results/cmorientation'+f, np.uint8(u.normalize_range(sm.cm.maps['orientation'])))
    maps+=4
    for i in sm.fm.maps['intensity']:
        maps+=1
        cv.imwrite( 'results/fmintensity'+ str(maps) + f, np.uint8(u.normalize_range(i.astype('float64'))))
    for i in sm.fm.maps['colors']['bg']:
        maps+=1
        cv.imwrite( 'results/fmcolorsbg'+ str(maps) + f, np.uint8(u.normalize_range(i.astype('float64'))))
    for i in sm.fm.maps['colors']['ry']:
        maps+=1
        cv.imwrite( 'results/fmcolorsry'+ str(maps) + f, np.uint8(u.normalize_range(i.astype('float64'))))