Ejemplo n.º 1
0
def total_significance():
	from samri.report.snr import iter_significant_signal
	from samri.utilities import bids_autofind

	substitutions = bids_autofind('~/ni_data/ofM.dr/bids/l1/generic/',
		path_template="{bids_dir}/sub-{{subject}}/ses-{{session}}/sub-{{subject}}_ses-{{session}}_acq-{{acquisition}}_task-{{task}}_cbv_pfstat.nii.gz",
		match_regex='.+/sub-(?P<sub>.+)/ses-(?P<ses>.+)/.*?_acq-(?P<acquisition>.+).*?_task-(?P<task>.+)_cbv_pfstat\.nii.gz',
		)
	iter_significant_signal('~/ni_data/ofM.dr/bids/l1/generic/sub-{subject}/ses-{session}/sub-{subject}_ses-{session}_acq-{acquisition}_task-{task}_cbv_pfstat.nii.gz',
		substitutions=substitutions,
		mask_path='/usr/share/mouse-brain-atlases/dsurqec_200micron_mask.nii',
		save_as='~/ni_data/ofM.dr/bids/l1/generic/total_significance.csv'
		)
Ejemplo n.º 2
0
def dr_cont():
    from labbookdb.report.development import animal_multiselect
    from samri.pipelines import glm
    from samri.pipelines.preprocess import bruker
    from samri.report.snr import iter_significant_signal
    from samri.utilities import bids_autofind

    # Assuming data cobnverted to BIDS
    bids_base = '~/ni_data/ofM.dr/bids'

    # Preprocess
    #animal_list = animal_multiselect(cage_treatments=['cFluDW','cFluDW_','cFluIP'])
    # Animal list selection needs fixing in LabbookDB database, so we add the following animals manually
    #animal_list.extend(['4001','4002','4003','4004','4005','4006','4007','4008','4009','4011','4012','4013','6557'])

    # Determining Responders by Significance
    _, substitutions = bids_autofind(
        '~/ni_data/ofM.dr/l1/generic/',
        path_template=
        "{bids_dir}/sub-{{subject}}/ses-{{session}}/sub-{{subject}}_ses-{{session}}_task-{{task}}_acq-{{acquisition}}_cbv_pfstat.nii.gz",
        match_regex=
        '.+/sub-(?P<sub>.+)/ses-(?P<ses>.+)/.*?_task-(?P<task>.+).*?_acq-(?P<acquisition>.+)_cbv_pfstat\.nii.gz',
    )
    print(substitutions)
    iter_significant_signal(
        '~/ni_data/ofM.dr/l1/generic/sub-{subject}/ses-{session}/sub-{subject}_ses-{session}_task-{task}_acq-{{acquisition}}_cbv_pfstat.nii.gz',
        substitutions=substitutions,
        mask_path='/usr/share/mouse-brain-atlases/dsurqec_200micron_mask.nii',
        save_as='~/ni_data/ofM.dr/l1/generic/total_significance.csv')

    # Determining Responders by a priori pattern
    glm.l2_common_effect(
        '~/ni_data/ofM.dr/l1/',
        workflow_name="a_priori_responders",
        include={
            'subject': [
                '4001', '4005', '4006', '4007', '4008', '4009', '4011', '4012',
                '4013'
            ],
        },
        groupby="session",
        keep_work=True,
        mask="/usr/share/mouse-brain-atlases/dsurqec_200micron_mask.nii",
    )
Ejemplo n.º 3
0
def vta_full(workflow_name='generic', ):
    from labbookdb.report.development import animal_multiselect
    from samri.pipelines import glm
    from samri.pipelines.preprocess import full_prep
    from samri.report.snr import iter_significant_signal
    from samri.utilities import bids_autofind

    # Assuming data cobnverted to BIDS
    bids_base = '~/ni_data/ofM.vta/bids'

    #full_prep(bids_base, "/usr/share/mouse-brain-atlases/dsurqec_200micron.nii",
    #	registration_mask="/usr/share/mouse-brain-atlases/dsurqec_200micron_mask.nii",
    #	functional_match={'type':['cbv',],},
    #	structural_match={'acquisition':['TurboRARE']},
    #	actual_size=True,
    #	functional_registration_method='composite',
    #	negative_contrast_agent=True,
    #	out_dir='~/ni_data/ofM.vta/preprocessing',
    #	workflow_name=workflow_name,
    #	)
    #glm.l1('~/ni_data/ofM.vta/preprocessing/generic',
    #	out_dir='~/ni_data/ofM.vta/l1',
    #	workflow_name=workflow_name,
    #	habituation="confound",
    #	mask="/usr/share/mouse-brain-atlases/dsurqec_200micron_mask.nii",
    #	# We need the workdir to extract the betas
    #	keep_work=True,
    #	)

    # Determining Responders by Significance
    path_template, substitutions = bids_autofind(
        '~/ni_data/ofM.vta/l1/generic/',
        path_template=
        "{bids_dir}/sub-{{subject}}/ses-{{session}}/sub-{{subject}}_ses-{{session}}_task-{{task}}_acq-{{acquisition}}_cbv_pfstat.nii.gz",
        match_regex=
        '.+/sub-(?P<sub>.+)/ses-(?P<ses>.+)/.*?_task-(?P<task>.+).*?_acq-(?P<acquisition>.+)_cbv_pfstat\.nii.gz',
    )
    print(substitutions)
    iter_significant_signal(
        path_template,
        substitutions=substitutions,
        mask_path='/usr/share/mouse-brain-atlases/dsurqec_200micron_mask.nii',
        save_as='~/ni_data/ofM.dr/vta/generic/total_significance.csv')
Ejemplo n.º 4
0
def vta_full(
	workflow_name='generic',
	):
	from labbookdb.report.development import animal_multiselect
	from samri.pipelines import glm
	from samri.pipelines.preprocess import full_prep
	from samri.report.snr import iter_significant_signal
	from samri.utilities import bids_autofind

	# Assuming data cobnverted to BIDS
	bids_base = '~/ni_data/ofM.vta/bids'

	#full_prep(bids_base, "/usr/share/mouse-brain-atlases/dsurqec_200micron.nii",
	#	registration_mask="/usr/share/mouse-brain-atlases/dsurqec_200micron_mask.nii",
	#	functional_match={'type':['cbv',],},
	#	structural_match={'acquisition':['TurboRARE']},
	#	actual_size=True,
	#	functional_registration_method='composite',
	#	negative_contrast_agent=True,
	#	out_dir='~/ni_data/ofM.vta/preprocessing',
	#	workflow_name=workflow_name,
	#	)
	#glm.l1('~/ni_data/ofM.vta/preprocessing/generic',
	#	out_dir='~/ni_data/ofM.vta/l1',
	#	workflow_name=workflow_name,
	#	habituation="confound",
	#	mask="/usr/share/mouse-brain-atlases/dsurqec_200micron_mask.nii",
	#	# We need the workdir to extract the betas
	#	keep_work=True,
	#	)

	# Determining Responders by Significance
	path_template, substitutions = bids_autofind('~/ni_data/ofM.vta/l1/generic/',
		path_template="{bids_dir}/sub-{{subject}}/ses-{{session}}/sub-{{subject}}_ses-{{session}}_task-{{task}}_acq-{{acquisition}}_cbv_pfstat.nii.gz",
		match_regex='.+/sub-(?P<sub>.+)/ses-(?P<ses>.+)/.*?_task-(?P<task>.+).*?_acq-(?P<acquisition>.+)_cbv_pfstat\.nii.gz',
		)
	print(substitutions)
	iter_significant_signal(path_template,
		substitutions=substitutions,
		mask_path='/usr/share/mouse-brain-atlases/dsurqec_200micron_mask.nii',
		save_as='~/ni_data/ofM.dr/vta/generic/total_significance.csv'
		)
Ejemplo n.º 5
0
def dr_full():
    from labbookdb.report.development import animal_multiselect
    from samri.pipelines import glm
    from samri.pipelines.preprocess import bruker
    from samri.report.snr import iter_significant_signal
    from samri.utilities import bids_autofind

    # Assuming data cobnverted to BIDS
    bids_base = '~/ni_data/ofM.dr/bids'

    # Preprocess
    animal_list = animal_multiselect(
        cage_treatments=['cFluDW', 'cFluDW_', 'cFluIP'])
    # Animal list selection needs fixing in LabbookDB database, so we add the following animals manually
    animal_list.extend([
        '4001', '4002', '4003', '4004', '4005', '4006', '4007', '4008', '4009',
        '4011', '4012', '4013', '6557'
    ])
    full_prep(
        bids_base,
        "~/ni_data/templates/dsurqec_200micron.nii",
        registration_mask="~/ni_data/templates/dsurqec_200micron_mask.nii",
        functional_match={
            'type': [
                'cbv',
            ],
        },
        structural_match={
            'acquisition': ['TurboRARE', 'TurboRARElowcov'],
        },
        subjects=animal_list,
        actual_size=True,
        functional_registration_method="composite",
        negative_contrast_agent=True,
        out_dir='~/ni_data/ofM.dr/preprocessing',
    )
    #bruker(bids_base, "~/ni_data/templates/dsurqec_200micron.nii",
    #	registration_mask="~/ni_data/templates/dsurqec_200micron_mask.nii",
    #	functional_match={'type':['bold',],},
    #	structural_match={'acquisition':['TurboRARE','TurboRARElowcov'],},
    #	subjects=animal_list,
    #	actual_size=True,
    #	functional_registration_method="composite",
    #	negative_contrast_agent=False,
    #	out_dir='~/ni_data/ofM.dr/preprocessing',
    #	)
    # Model fitting
    glm.l1(
        '~/ni_data/ofM.dr/preprocessing/generic',
        out_dir='~/ni_data/ofM.dr/l1',
        workflow_name='generic',
        habituation="confound",
        mask="/usr/share/mouse-brain-atlases/dsurqec_200micron_mask.nii",
        # We need the workdir to extract the betas
        keep_work=True,
    )

    # Determining Responders by Significance
    substitutions = bids_autofind(
        '~/ni_data/ofM.dr/l1/generic/',
        path_template=
        "{bids_dir}/sub-{{subject}}/ses-{{session}}/sub-{{subject}}_ses-{{session}}_task-{{task}}_acq-{{acquisition}}_cbv_pfstat.nii.gz",
        match_regex=
        '.+/sub-(?P<sub>.+)/ses-(?P<ses>.+)/.*?_task-(?P<task>.+).*?_acq-(?P<acquisition>.+)_cbv_pfstat\.nii.gz',
    )
    iter_significant_signal(
        '~/ni_data/ofM.dr/l1/generic/sub-{subject}/ses-{session}/sub-{subject}_ses-{session}_task-{task}_acq-{{acquisition}}_cbv_pfstat.nii.gz',
        substitutions=substitutions,
        mask_path='/usr/share/mouse-brain-atlases/dsurqec_200micron_mask.nii',
        save_as='~/ni_data/ofM.dr/l1/generic/total_significance.csv')

    # Determining Responders by a priori pattern
    glm.l2_common_effect(
        '~/ni_data/ofM.dr/l1/',
        workflow_name="a_priori_responders",
        include={
            'subject': [
                '4001', '4005', '4006', '4007', '4008', '4009', '4011', '4012',
                '4013'
            ],
        },
        groupby="session",
        keep_work=True,
        mask="/usr/share/mouse-brain-atlases/dsurqec_200micron_mask.nii",
    )