def saveFile(self): file, _ = QFileDialog.getSaveFileName(self, "Save File", os.getcwd(), "Visual Model Project (*.vmp)") saved_data = {} saved_data["imagePath"] = self.imagecard.image_filename saved_data["videoPath"] = self.videocard.video_path if file != "": save.save_file(file, saved_data) print(file)
def save(): try: word = request.args.get('word') if not word: raise Exception() word = word.lower() jobs = db.get(word) if not jobs: raise Exception() save_file(jobs, word) return save_file(f"job-{word}.csv", attachment_filename=f"job-{word}.csv", as_attachment = True) except: return redirect("/")
from py_indeed import get_jobs as get_indeed_jobs from save import save_file indeed_jobs = get_indeed_jobs() jobs = indeed_jobs save_file(jobs) # https://kr.indeed.com/jobs?q=python&limit=50&radius=25&start=50
from scraper import get_reviews from save import save_file reviews = get_reviews() save_file(reviews)
dataFile_postfix='.csv', task_description= '', # it's been set in config_other_parameter(), parameter_config.py global_parameter_dict={}) config.set_additional_parameters(hyper_parameter_dict, data_parameter_obj._args) data_parameter_dict = data_parameter_obj._args model_parameter_obj = Parameters( train_num=hyper_parameter_dict['train_num'], rollTest_num=data_parameter_dict['rollTest_num'], batch_size=512 * 2, nb_classes=4, nb_input=10, evaluate_batch_size=128, evaluate_verbose=0, #filter_row =2 , filter_col =1, filter_num = 16, loss='categorical_crossentropy', optimizer='rmsprop', loss_weights='loss_weights', metrics=['accuracy'], modelFile_directoryName='models/', modelFile_postfix='', ) roll_result_dict = roll.get_roll_start(data_parameter_obj, model_parameter_obj) save.save_file(data_parameter_obj, roll_result_dict) save.save_figure(data_parameter_obj, roll_result_dict) elapsed = (time.time() - start) print("Time used(minute): ", float(elapsed) / 60)