Ejemplo n.º 1
0
def print_test_accuracy(show_example_errors=False,
                        show_confusion_matrix=False):

    # For all the images in the test-set,
    # calculate the predicted classes and whether they are correct.
    correct, cls_pred = predict_cls_test()
    #----------------------------------------
    # save cls_pred and cls_true
    save_cls_pred(images_name[:-4], time_stamp, cls_pred)
    save_cls_true(images_name[:-4], time_stamp, data.test.cls)
    #----------------------------------------
    # Classification accuracy and the number of correct classifications.
    acc, num_correct = cls_accuracy(correct)

    # Number of images being classified.
    num_images = len(correct)

    # Print the accuracy.
    msg = "Accuracy on Test-Set: {0:.1%} ({1} / {2})"
    print(msg.format(acc, num_correct, num_images))

    # Plot the confusion matrix, if desired.
    if show_confusion_matrix:
        print("Confusion Matrix:")
        plot_confusion_matrix(cls_pred=cls_pred)

    # Plot some examples of mis-classifications, if desired.
    if show_example_errors:
        print("Example errors:")
        plot_example_errors(cls_pred=cls_pred, correct=correct)
Ejemplo n.º 2
0
    correct_prediction = tf.equal(y_pred_cls, y_true_cls)
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    #-----------------------------------
    # Saver
    saver = tf.train.Saver()
    print ("AI:{0}".format(AI_saved_dir))
    if not os.path.exists(AI_saved_dir):
        print ("No AI can be restore, please check folder ./checkpoints")
    save_path = os.path.join(AI_saved_dir, 'best_validation')
    #-----------------------------------
    # Tensorflow run
    session = tf.Session()
    # restore previous weight
    saver.restore(sess=session, save_path=save_path)
    batch_size = 512
    print ("batch_size = {0}".format(batch_size))
    # test the restored AI, show confusion matrix and example_errors
    # and save the cls of prediction
    print_test_accuracy(show_confusion_matrix=True)
    # save labels of prediction
    label_pred = predict_label(data.test.images, data.test.labels)
    save_label_pred(images_name[:-4], directory, label_pred)
    # save cls_pred and cls_true
    save_cls_pred(images_name[:-4], directory, cls_pred)
    save_cls_true(images_name[:-4], directory, data.test.cls)
    session.close()
    #-----------------------------------
    # measuring time
    elapsed_time = time.time() - start_time
    print ("Exiting Main Program, spending ", elapsed_time, "seconds.")