def test_dbm_export(self): # Create a dbm classifier to export. bayes = DBDictClassifier(TEMP_DBM_NAME) # Stuff some messages in it so it's not empty. bayes.learn(tokenize(spam1), True) bayes.learn(tokenize(good1), False) # Save & Close. bayes.store() bayes.close() # Export. sb_dbexpimp.runExport(TEMP_DBM_NAME, "dbm", TEMP_CSV_NAME) # Reopen the original. bayes = open_storage(TEMP_DBM_NAME, "dbm") # Verify that the CSV holds all the original data (and, by using # the CSV module to open it, that it is valid CSV data). fp = open(TEMP_CSV_NAME, "rb") reader = sb_dbexpimp.csv.reader(fp) (nham, nspam) = reader.next() self.assertEqual(int(nham), bayes.nham) self.assertEqual(int(nspam), bayes.nspam) for (word, hamcount, spamcount) in reader: word = sb_dbexpimp.uunquote(word) self.assert_(word in bayes._wordinfokeys()) wi = bayes._wordinfoget(word) self.assertEqual(int(hamcount), wi.hamcount) self.assertEqual(int(spamcount), wi.spamcount)
def test_pickle_export(self): bayes = PickledClassifier(TEMP_PICKLE_NAME) bayes.learn(tokenize(spam1), True) bayes.learn(tokenize(good1), False) bayes.store() sb_dbexpimp.runExport(TEMP_PICKLE_NAME, "pickle", TEMP_CSV_NAME) fp = open(TEMP_CSV_NAME, "rb") reader = sb_dbexpimp.csv.reader(fp) (nham, nspam) = reader.next() self.assertEqual(int(nham), bayes.nham) self.assertEqual(int(nspam), bayes.nspam) for (word, hamcount, spamcount) in reader: word = sb_dbexpimp.uunquote(word) self.assert_(word in bayes._wordinfokeys()) wi = bayes._wordinfoget(word) self.assertEqual(int(hamcount), wi.hamcount) self.assertEqual(int(spamcount), wi.spamcount)