def Wavelet_Spectrum_WS(data,sampling_time,year,wavelet='cmor0.7-1.5'):
    dt = 1/sampling_time
    time   =  np.arange(len(data))*dt
    data.fillna(method='ffill',inplace=True)
    signal = data['WS95'].copy() - data['WS95'].mean()
    scales = np.logspace(0, 5, num=350, dtype=np.int32)
    fig, (ax) = plt.subplots(1, 1,figsize=(18,8))
    scg.cws(time,signal, scales,clim=(0,50),
            cbar= 'horizontal',cmap='inferno',cbarlabel='Amplitude (absCWT)',
            cbarkw={'aspect':45, 'pad':0.15,'shrink':0.5, 
                    'fraction':0.05,'ticks':[0,10,20,30,40,50]},
            ylabel="Period [hour]", xlabel='minute',yscale='log',ax=ax)
    y_tic = [1,2,4,8,12,16,24,32,64,128]
    ax.set_yticks(y_tic)
    ax.set_yticklabels(y_tic)
    m_day = [0,31,28,31,30,31,30,31,31,30,31,30]
    x_tic = np.array(m_day)*24
    x_tic2 = x_tic.copy()
    for i in range(len(x_tic)):
        x_tic2[i] = int(x_tic[i] + x_tic[:i].sum())
    base = data['DateTime'].iloc[0]
    mon = ['01','02','03','04','05','06','07','08','09','10','11','12']
    arr=np.array(["{}-{}".format(base.year,mon[i]) for i in range(len(mon))])
    ax.set_xticks(x_tic2)
    ax.set_xticklabels(arr)
    ax.set_ylim(1,y_tic[-1])
    ax.tick_params(axis="x", labelsize=18)
    ax.tick_params(axis="y", labelsize=18)
    ax.set_ylabel("Period [hour]",size=20)
    ax.set_xlabel("Time [month]",size=18)
    ax.set_title("Contunuous Wavelet Transform of Wind Speed ({})".format(year),size=20)
    plt.show()
Ejemplo n.º 2
0
def generate_spectral_analysis(ecg_data: list,
                               start: int,
                               end: int,
                               classif: str = 'NA',
                               spectrum_max_hz: int = 40,
                               fs: int = 1_000):

    fig, (ax0, ax1, ax2) = plt.subplots(3, 1, figsize=(8, 4), sharex=True)
    fig.subplots_adjust(hspace=.01)

    # ax0
    ax0.plot(np.arange(0, len(ecg_data)), ecg_data, linewidth=1)
    ax0.axis('off')

    #  ax2
    f, t, Sxx = signal.spectrogram(
        ecg_data,
        fs,
        # window=('tukey', 0.1),
        # nperseg=150)
        window=('tukey', 0.1),
        nperseg=int(round(fs / 4, 0)))
    ax1.pcolormesh(t * fs, -f, Sxx, shading='flat')
    ax1.set_ylim(-spectrum_max_hz)
    ax1.set_ylabel('Hz (inv)')

    # ax1
    scg.set_default_wavelet('morl')

    signal_length = spectrum_max_hz
    # range of scales to perform the transform
    scales = scg.periods2scales(np.arange(1, signal_length + 1))

    # the scaleogram
    # sampling_ratio = 4
    # sample_ecg = []
    # for element in range(int(round(len(ecg_data)/sampling_ratio, 0))):
    #     sample_ecg.append(np.mean(ecg_data[sampling_ratio * element:
    #                                        sampling_ratio * element +
    #                                        sampling_ratio]))
    scg.cws(ecg_data,
            scales=scales,
            figsize=(10, 2.0),
            coi=False,
            ylabel="Hz",
            xlabel='Frame',
            ax=ax2,
            cbar=None,
            title='')

    fig.suptitle(
        'spectrum frequency from frame {} to {} - classif : {}'.format(
            start, end, classif),
        fontsize=10)

    st.pyplot(fig)
Ejemplo n.º 3
0
def plot_sensors_cwt(data_seg, n_periods, wavelet, figsize=(12, 32)):
    f, axs = plt.subplots(10,
                          2,
                          figsize=figsize,
                          constrained_layout=True,
                          sharex=True)
    periods = np.arange(1, n_periods)
    scales = scaleogram.periods2scales(periods)
    time = data_seg.reset_index()['index'].values
    for ax, case in zip(axs, data_seg.columns):
        sensor_number = case.split("_")[-1]
        ax[0].set_title(f'Time series: sensor:{sensor_number}')
        ax[0].plot(data_seg[case].values,
                   marker='o',
                   ls='-',
                   ms=0.05,
                   alpha=0.5)

        ax[1] = scaleogram.cws(time=time,
                               wavelet=wavelet,
                               scales=scales,
                               signal=data_seg[case].values,
                               coikw={"alpha": 0.9},
                               ax=ax[1])
        ax[1].set_title(f'CWT: sensor:{sensor_number}: wavelet: {wavelet}')
    plt.show()
def wavelets(time, flux):
    """Using morlet wavelet from scaleogram package to determine period. 
        Values are plotted on a 2-D contour map, and then transformed into
        a 1-D plot.

    Args:
        time (List): Time values from processed data file.
        flux (List): Flux values from processed data file.
    """
    flux = flux / np.median(flux) - 1
    flux = flux / np.std(np.diff(flux))

    # Convert time to np array for scaleogram.
    time = np.asarray(time)
    # Spacing in time values for computing transform
    dt = time[1] - time[0]
    scales = scg.periods2scales(np.arange(1, len(time)))
    scg.set_default_wavelet('cmor2-2.0')
    wavelet = scg.get_default_wavelet

    ax2 = scg.cws(time,
                  flux,
                  scales=scales,
                  coikw={
                      'alpha': 0.5,
                      'hatch': '/'
                  })
    plt.show()

    # Same code in scaleogram package, used to visualize 1-D version of the data.
    coeff, scales_freq = scg.fastcwt(flux, scales, 'cmor2-2.0', dt)

    # Sum all of the x values pertaining to each period value.
    period_sum = []
    for idx, arr in enumerate(coeff):
        period_sum.append(np.sum(np.abs(arr)))

    # Period values from the fastcwt function.
    transformed_time = 1. / scales_freq

    output.plot_graph(transformed_time, period_sum, "Period", "Sum per Period",
                      "Wavelet Transformation - 1-D")
Ejemplo n.º 5
0
    yticks = 2**np.arange(np.ceil(np.log2(period.min())),
                          np.ceil(np.log2(period.max())))
    ax.set_yticks(np.log2(yticks))
    ax.set_yticklabels(yticks)
    ax.invert_yaxis()
    ylim = ax.get_ylim()
    ax.set_ylim(ylim[0], -1)

    cbar_ax = fig.add_axes([0.95, 0.5, 0.03, 0.25])
    fig.colorbar(im, cax=cbar_ax, orientation="vertical")
    plt.show()


#PLOT SPECTROGRAM
fig, ax = plt.subplots(figsize=(10, 10))
plot_spectrogram(ax=ax, time=time, signal=elnino)
plt.show()

#PLOT HIGHER RESOLUTION SCALEOGRAM USING SCALEOGRAM PACKAGE
scales = np.logspace(1, 2.4, num=200, dtype=np.int32)
#scales = np.arange(4,400,8) #For a coarser decomp (adjust last param to change resolution)
ax = scg.cws(time,
             elnino,
             scales,
             figsize=(14, 7),
             ylabel="Period [Years]",
             xlabel='Year',
             yscale='log')
ticks = ax.set_yticks([2, 4, 8, 16, 32])
ticks = ax.set_yticklabels([2, 4, 8, 16, 32])
Ejemplo n.º 6
0
fs = 1024
window = 2 * fs
(f0, f1, f2) = fs / 16, fs / 64, fs / 4
p1, p2 = 1 / f1, 1 / f2
x = np.arange(window)
y0 = np.sin(2 * np.pi * x / f0) * gaussian(x, 800, 80)
y1 = np.sin(2 * np.pi * x / f1) * gaussian(x, 200, 30)
y2 = np.sin(2 * np.pi * x / f2)
y = y0 + y1 + y2
x = np.arange(window)
wavelet = 'cmor0.5-1'

plt.close('all')
fig, axs = plt.subplots(2, gridspec_kw={'height_ratios': [1, 3]})
axs[0].plot(y)
scg.cws(x, y, scales=np.arange(1, 150), wavelet=wavelet, ax=axs[1])
fig.tight_layout()
txt = ax2.annotate("p1=%ds" % p1,
                   xy=(n / 2, p1),
                   xytext=(n / 2 - 10, p1),
                   bbox=dict(boxstyle="round4", fc="w"))
txt = ax2.annotate("p2=%ds" % p2,
                   xy=(n / 2, p2),
                   xytext=(n / 2 - 10, p2),
                   bbox=dict(boxstyle="round4", fc="w"))
#%%
from scipy import signal
plt.close('all')

fs = 1024
f0 = fs / 16
Ejemplo n.º 7
0
def pre_process_cwt(onsets_images_dir, non_onsets_images_dir, audio_files, ann_files):
    # onsets_images_dir = join('dataset_transformed', 'train')# , 'onsets')
    # non_onsets_images_dir = join('dataset_transformed', 'train')# , 'non-onsets')
    onsets_images_dir = 'dataset_transformed'
    non_onsets_images_dir = 'dataset_transformed'

    dataset_dir = 'dataset'
    audio_files = list_audio_files(dataset_dir)
    ann_files = list_annotation_files(dataset_dir)
    frame_size = 1024
    sample_rate = 44100
    t = frame_size / sample_rate
    # t = 0.09287981859410431 # seconds for frame_size = 4096

    time = np.arange(frame_size, dtype=np.float16)
    scales = np.arange(1,81) # scaleogram with 80 rows

    print(f'There are {str(len(audio_files))} audio files and {str(len(ann_files))} annotation files')

    i = 0
    for audio_file in audio_files:
        file_name = basename(audio_file)
        print(f'Pre-processing file {str(i+1)}/{str(len(audio_files))}: {file_name}')

        # Read audio file
        sig = Signal(audio_file, sample_rate, num_channels = 1)

        # Split audio signal into frames of same size
        frames = FramedSignal(sig, frame_size, hop_size = frame_size)
        print(f'There are {str(len(frames))} frames')

        # Read onset annotations for current audio file
        onset_file = ann_files[i]
        onsets = np.loadtxt(onset_file)
        print(f'Onsets read from {onset_file}')
        number_of_onsets = len(onsets)
        print(f'There are {str(number_of_onsets)} onsets')

        # Check if we already generated the correct amount of frames for that file before
        matching_files = glob.glob('dataset_transformed/' + '*'+ file_name + '*')
        if len(matching_files) > 0:
            if len(frames) == len(matching_files):
                print(f'Skipping file {str(i)}/{str(len(audio_files))}: {file_name}')
                i += 1
                continue

        start = 0
        end = t
        f = 0
        onsets_found_this_file = 0
        for frame in frames:
            # Plot frame
            # plt.plot(frame)
            # plt.show()

            # Check if contains onset
            start = f * t
            end = start + t
            f += 1
            hasOnset = False
            for onset in onsets:
                if start <= onset and end >= onset:
                    hasOnset = True
                    onsets_found_this_file += 1

            if hasOnset:
                print(f'There is an onset within the range: {str(start)} to {str(end)} ms')
            else:
                print(f'There are no onsets within the range: {str(start)} to {str(end)} ms')

            # Apply CWT
            cwt = scg.CWT(time, frame, scales, wavelet='cmor1.5-1.0')
            # print(cwt.coefs.shape)

            # Get scaleogram
            ax = scg.cws(cwt, yaxis = 'frequency', wavelet = 'cmor1.5-1.0', cbar = None, coi = False)

            # ['cgau1 :\tComplex Gaussian wavelets', 'cgau2 :\tComplex Gaussian wavelets', 
            # 'cgau3 :\tComplex Gaussian wavelets', 'cgau4 :\tComplex Gaussian wavelets', 
            # 'cgau5 :\tComplex Gaussian wavelets', 'cgau6 :\tComplex Gaussian wavelets', 
            # 'cgau7 :\tComplex Gaussian wavelets', 'cgau8 :\tComplex Gaussian wavelets', 
            # 'cmor1.5-1.0 :\tComplex Morlet wavelets', 'fbsp1-1.5-1.0 :\tFrequency B-Spline wavelets',
            #  'gaus1 :\tGaussian', 'gaus2 :\tGaussian', 'gaus3 :\tGaussian', 'gaus4 :\tGaussian', 
            #  'gaus5 :\tGaussian', 'gaus6 :\tGaussian', 'gaus7 :\tGaussian', 'gaus8 :\tGaussian', 
            #  'mexh :\tMexican hat wavelet', 'morl :\tMorlet wavelet', 'shan1.5-1.0 :\tShannon wavelets']

            # Remove axis from image
            plt.subplots_adjust(bottom = 0, top = 1, left = 0, right = 1)
            # plt.show()

            # Get image from matplot and process it
            fig = plt.gcf()
            plot_img_np = get_img_from_fig(fig)
            image = Image.fromarray(plot_img_np).convert('RGB').resize((15,80)) # TODO try PIL.Image.LANCZOS

            # Save image
            label = '1' if hasOnset == True else '0'
            image.save(join(onsets_images_dir, f'{label}-{file_name}-F{str(f)}.png'))

            plt.close()

        if number_of_onsets != onsets_found_this_file:
            print(f'It was supposed to have {str(number_of_onsets)} onsets. Found {str(onsets_found_this_file)} instead. Exiting...')
            exit()

        i += 1
Ejemplo n.º 8
0
            # Wavelet attempt
            wl_rise_data = rolling_rise_mean.dropna()
            wl_rise_time = rise_panda.time[wl_rise_data.index].to_numpy()
            wl_rise_data = wl_rise_data.to_numpy()
            wl_rise_data_norm = wl_rise_data-wl_rise_data.mean()
            # choose default wavelet function for the entire notebook
            scg.set_default_wavelet('cmor1.5-1.0')
            if testing == True:
                fig1, axs = plt.subplots(2, figsize=(20,12)); 
                lines = axs[0].plot(wl_rise_time, wl_rise_data);
                axs[0].set(xlabel='time',
                           ylabel='detrended and norm width of jet [km]')
                           
                scales = scg.periods2scales(np.arange(1, 120))
                scg.cws(wl_rise_time, wl_rise_data_norm, scales=scales, ax=axs[1])
    
                scg.cws(wl_rise_time, wl_rise_data_norm, ax=axs[1],
                        yscale='linear', cbar='horizontal'); 
                plt.tight_layout()
                plt.show()
    
            wl_fall_data = rolling_fall_mean.dropna()
            wl_fall_time = fall_panda.time[wl_fall_data.index].to_numpy()
            wl_fall_time = wl_fall_time-wl_fall_time[0]
            wl_fall_data = wl_fall_data.to_numpy()
            wl_fall_data_norm = wl_fall_data-wl_fall_data.mean()
            # choose default wavelet function forlen() the entire notebook
            if testing == True:
                fig1, axs = plt.subplots(2, figsize=(20,12)); 
                lines = axs[0].plot(wl_fall_time, wl_fall_data);
Ejemplo n.º 9
0
if st.checkbox('Show raw data'):
    st.subheader('Raw data')
    st.write(data)

st.subheader(f"ECG record : {chosen_record}")

st.line_chart(data)

if samptovalue - sampfromvalue > 2000:
    st.text('No scaleogram range to long')
else:
    # choose default wavelet function
    scg.set_default_wavelet('morl')

    signal_length = samptovalue - sampfromvalue
    # range of scales to perform the transform
    scales = scg.periods2scales(np.arange(1, signal_length + 1))
    x_values_wvt_arr = range(0, len(data), 1)

    # the scaleogram
    fig = scg.cws(data,
                  scales=scales,
                  figsize=(10, 4.0),
                  coi=False,
                  ylabel="Period",
                  xlabel="Time")
    #st.plotly_chart(scal)
    #coeff, freq = pywt.cwt(data, 500 , 'morl', 1)
    st.pyplot(fig.figure)