Ejemplo n.º 1
0
def error(x, V, n_basis_vec, exact):

    # Initialize the Schrod
    eqn = schrod.Schrod(x, V)

    # Calculate the error
    rel_err=[]
    for n in n_basis_vec:
        eqn.set_n_basis(n)
        eqn.solve()
        lam = eqn.eigs
        err = (np.abs((lam - exact[0:n])/exact[0:n]))[...,0:n_basis_vec[0]]

        rel_err.append(err)

    return np.asarray(rel_err)
Ejemplo n.º 2
0
def timing(x, V, n_basis_vec, n_tests=1):

    # Initialize the Schrod
    eqn = schrod.Schrod(x, V)

    # Time the Schrod for different numbers of basis states
    times = []
    for n in n_basis_vec:
        avg_time = 0
        for i in range(n_tests):
            eqn.set_n_basis(n)
            ti = time.time()
            eqn.solve()
            tf = time.time()
            avg_time += (tf - ti) / n_tests

        times.append(avg_time)

    return times
Ejemplo n.º 3
0
Solve Schodinger's equation and plot the probability distributions
Author: D. Hudson Smith
"""

from __future__ import print_function

import matplotlib.pyplot as plt
import numpy as np
import schrod

# Specify the potential
x = np.linspace(-3, 3, 200)
V = x + 0.5 * x**4

# Create and solve Schrodinger's equation
eqn = schrod.Schrod(x, V, n_basis=40)
eqn.solve()

# Get the eigenvalues and eigenvectors
eig_vals = eqn.eigs
probs = eqn.prob_eig_x()

# Plot everything
plt.xlim((x[0], x[-1]))
plt.ylim((-1, 9))
plt.title("Probability distributions for\n$V(x) = x + 0.5 x^4$", fontsize=18)
plt.xlabel("$x$")
plt.ylabel('Energy')

n_eigs_plt = 5
plt.plot(x, V, 'b-', lw=2)
Ejemplo n.º 4
0
"""
Solve Schodinger's equation up to a specified error
Author: D. Hudson Smith
"""

from __future__ import print_function

import schrod, numpy

# Specify the potential
x = numpy.linspace(-20, 20, 200)
V = 1. / 2. * x**2

# Ask for 10 digits of precision
eqn = schrod.Schrod(x, V)
sol = eqn.solve_to_tol(n_eig=5, tol=1e-10, n_init=50, n_max=150)

# Print the first five eigenvalues
numpy.set_printoptions(15)
print("Eigenvalues: \n", eqn.eigs[0:5], "\nError estimate: \n", sol.eig_errs,
      "\nNumber of basis states at convergence: \n", sol.n_basis_converged)

# If <tol> cannot be achieved, a warning is returned:
sol = eqn.solve_to_tol(n_eig=5, tol=1e-15, n_init=100, n_max=150, n_step=10)

# Print the first five eigenvalues
print("Eigenvalues: \n", eqn.eigs[0:5], "\nError estimate: \n", sol.eig_errs,
      "\nNumber of basis states at termination: \n", sol.n_basis_converged)

# Sample output
# Eigenvalues:
Ejemplo n.º 5
0
######################################################################
# Set and solve Schrodinger's Equation


# Specify the potential
def Vfunc(x):
    return np.abs(x)


x = np.linspace(-30, 30, 600)
V = Vfunc(x)
Vmax = V[0] / 3

# Create and solve Schrodinger's equation
eqn = schrod.Schrod(x, V, n_basis=100)
sol = eqn.solve()

# Print the first five eigenvalues
print("Eigenvalues: ", eqn.eigs[0:5])

######################################################################
# The initial wave packet


# Helper functions for gaussian wave-packets
def gauss_x(x, a, x0, k0):
    """
    a gaussian wave packet of width a, centered at x0, with momentum k0
    """
    return ((a * np.sqrt(np.pi))**(-0.5) *