def test_SVR(): """ Test Support Vector Regression """ clf = svm.SVR(kernel='linear') clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.dual_coef_, [[-0.1, 0.1]]) assert_array_almost_equal(clf.coef_, [[0.2, 0.2]]) assert_array_almost_equal(clf.support_vectors_, [[-1, -1], [1, 1]]) assert_array_equal(clf.support_, [1, 3]) assert_array_almost_equal(clf.intercept_, [1.5]) assert_array_almost_equal(pred, [1.1, 2.3, 2.5]) # the same with kernel='rbf' clf = svm.SVR(kernel='rbf') clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.dual_coef_, [[-0.014, -0.515, -0.013, 0.515, 0.013, 0.013]], decimal=3) assert_raises(NotImplementedError, lambda: clf.coef_) assert_array_almost_equal(clf.support_vectors_, X) assert_array_almost_equal(clf.intercept_, [1.49997261]) assert_array_almost_equal(pred, [1.10001274, 1.86682485, 1.73300377])
def test_SVR(): """ Test SVM regression """ clf = svm.SVR(kernel='linear') clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.dual_coef_, [[-0.1, 0.1]]) assert_array_almost_equal(clf.coef_, [[0.2, 0.2]]) assert_array_almost_equal(clf.support_, [[-1, -1], [1, 1]]) assert_array_almost_equal(clf.intercept_, [1.5]) assert_array_almost_equal(pred, [1.1, 2.3, 2.5]) # the same with kernel='rbf' clf = svm.SVR(kernel='rbf') clf.fit(X, Y) pred = clf.predict(T) assert_array_almost_equal(clf.dual_coef_, [[-0.01441007, -0.51530606, -0.01365979, 0.51569493, 0.01387495, 0.01380604]]) assert_raises(NotImplementedError, lambda: clf.coef_) assert_array_almost_equal(clf.support_, X) assert_array_almost_equal(clf.intercept_, [ 1.49997261]) assert_array_almost_equal(pred, [ 1.10001274, 1.86682485, 1.73300377])
def svm_reg(algo={},tmp={},testset={},X=None,Y=None): print "svm_reg" svr_poly=svm.SVR(kernel="linear") pred=svr_poly.fit(X,Y).predict(X) RMSE2(pred=pred,test=Y);