Ejemplo n.º 1
0
    def todok(self, copy=False):
        from .dok import dok_matrix

        self.sum_duplicates()
        dok = dok_matrix((self.shape), dtype=self.dtype)
        dok.update(izip(izip(self.row,self.col),self.data))

        return dok
Ejemplo n.º 2
0
    def _set_arrayXarray(self, row, col, x):
        row = list(map(int, row.ravel()))
        col = list(map(int, col.ravel()))
        x = x.ravel()
        dict.update(self, izip(izip(row, col), x))

        for i in np.nonzero(x == 0)[0]:
            key = (row[i], col[i])
            if dict.__getitem__(self, key) == 0:
                # may have been superseded by later update
                del self[key]
Ejemplo n.º 3
0
    def _set_arrayXarray(self, row, col, x):
        row = list(map(int, row.ravel()))
        col = list(map(int, col.ravel()))
        x = x.ravel()
        dict.update(self, izip(izip(row, col), x))

        for i in np.nonzero(x == 0)[0]:
            key = (row[i], col[i])
            if dict.__getitem__(self, key) == 0:
                # may have been superseded by later update
                del self[key]
Ejemplo n.º 4
0
    def __setitem__(self, index, x):
        if isinstance(index, tuple) and len(index) == 2:
            # Integer index fast path
            i, j = index
            if (isintlike(i) and isintlike(j) and 0 <= i < self.shape[0]
                    and 0 <= j < self.shape[1]):
                v = np.asarray(x, dtype=self.dtype)
                if v.ndim == 0 and v != 0:
                    dict.__setitem__(self, (int(i), int(j)), v[()])
                    return

        i, j = self._unpack_index(index)
        i, j = self._index_to_arrays(i, j)

        if isspmatrix(x):
            x = x.toarray()

        # Make x and i into the same shape
        x = np.asarray(x, dtype=self.dtype)
        x, _ = np.broadcast_arrays(x, i)

        if x.shape != i.shape:
            raise ValueError("Shape mismatch in assignment.")

        if np.size(x) == 0:
            return

        min_i = i.min()
        if min_i < -self.shape[0] or i.max() >= self.shape[0]:
            raise IndexError('Index (%d) out of range -%d to %d.' %
                             (i.min(), self.shape[0], self.shape[0]-1))
        if min_i < 0:
            i = i.copy()
            i[i < 0] += self.shape[0]

        min_j = j.min()
        if min_j < -self.shape[1] or j.max() >= self.shape[1]:
            raise IndexError('Index (%d) out of range -%d to %d.' %
                             (j.min(), self.shape[1], self.shape[1]-1))
        if min_j < 0:
            j = j.copy()
            j[j < 0] += self.shape[1]

        dict.update(self, izip(izip(i.flat, j.flat), x.flat))

        if 0 in x:
            zeroes = x == 0
            for key in izip(i[zeroes].flat, j[zeroes].flat):
                if dict.__getitem__(self, key) == 0:
                    # may have been superseded by later update
                    del self[key]
Ejemplo n.º 5
0
    def __setitem__(self, index, x):
        if isinstance(index, tuple) and len(index) == 2:
            # Integer index fast path
            i, j = index
            if (isintlike(i) and isintlike(j) and 0 <= i < self.shape[0]
                    and 0 <= j < self.shape[1]):
                v = np.asarray(x, dtype=self.dtype)
                if v.ndim == 0 and v != 0:
                    dict.__setitem__(self, (int(i), int(j)), v[()])
                    return

        i, j = self._unpack_index(index)
        i, j = self._index_to_arrays(i, j)

        if isspmatrix(x):
            x = x.toarray()

        # Make x and i into the same shape
        x = np.asarray(x, dtype=self.dtype)
        x, _ = np.broadcast_arrays(x, i)

        if x.shape != i.shape:
            raise ValueError("shape mismatch in assignment")

        if np.size(x) == 0:
            return

        min_i = i.min()
        if min_i < -self.shape[0] or i.max() >= self.shape[0]:
            raise IndexError('index (%d) out of range -%d to %d)' %
                             (i.min(), self.shape[0], self.shape[0] - 1))
        if min_i < 0:
            i = i.copy()
            i[i < 0] += self.shape[0]

        min_j = j.min()
        if min_j < -self.shape[1] or j.max() >= self.shape[1]:
            raise IndexError('index (%d) out of range -%d to %d)' %
                             (j.min(), self.shape[1], self.shape[1] - 1))
        if min_j < 0:
            j = j.copy()
            j[j < 0] += self.shape[1]

        dict.update(self, izip(izip(i.flat, j.flat), x.flat))

        if 0 in x:
            zeroes = x == 0
            for key in izip(i[zeroes].flat, j[zeroes].flat):
                if dict.__getitem__(self, key) == 0:
                    # may have been superseded by later update
                    del self[key]
Ejemplo n.º 6
0
    def _insert_many(self, i, j, x):
        """Inserts new nonzero at each (i, j) with value x

        Here (i,j) index major and minor respectively.
        i, j and x must be non-empty, 1d arrays.
        Inserts each major group (e.g. all entries per row) at a time.
        Maintains has_sorted_indices property.
        Modifies i, j, x in place.
        """
        order = np.argsort(i, kind='mergesort')  # stable for duplicates
        i = i.take(order, mode='clip')
        j = j.take(order, mode='clip')
        x = x.take(order, mode='clip')

        do_sort = self.has_sorted_indices

        # Update index data type
        idx_dtype = get_index_dtype((self.indices, self.indptr),
                                    maxval=(self.indptr[-1] + x.size))
        self.indptr = np.asarray(self.indptr, dtype=idx_dtype)
        self.indices = np.asarray(self.indices, dtype=idx_dtype)
        i = np.asarray(i, dtype=idx_dtype)
        j = np.asarray(j, dtype=idx_dtype)

        # Collate old and new in chunks by major index
        indices_parts = []
        data_parts = []
        ui, ui_indptr = _compat_unique(i, return_index=True)
        ui_indptr = np.append(ui_indptr, len(j))
        new_nnzs = np.diff(ui_indptr)
        prev = 0
        for c, (ii, js, je) in enumerate(izip(ui, ui_indptr, ui_indptr[1:])):
            # old entries
            start = self.indptr[prev]
            stop = self.indptr[ii]
            indices_parts.append(self.indices[start:stop])
            data_parts.append(self.data[start:stop])

            # handle duplicate j: keep last setting
            uj, uj_indptr = _compat_unique(j[js:je][::-1], return_index=True)
            if len(uj) == je - js:
                indices_parts.append(j[js:je])
                data_parts.append(x[js:je])
            else:
                indices_parts.append(j[js:je][::-1][uj_indptr])
                data_parts.append(x[js:je][::-1][uj_indptr])
                new_nnzs[c] = len(uj)

            prev = ii

        # remaining old entries
        start = self.indptr[ii]
        indices_parts.append(self.indices[start:])
        data_parts.append(self.data[start:])

        # update attributes
        self.indices = np.concatenate(indices_parts)
        self.data = np.concatenate(data_parts)
        nnzs = np.asarray(np.ediff1d(self.indptr, to_begin=0), dtype=idx_dtype)
        nnzs[1:][ui] += new_nnzs
        self.indptr = np.cumsum(nnzs, out=nnzs)

        if do_sort:
            # TODO: only sort where necessary
            self.has_sorted_indices = False
            self.sort_indices()

        self.check_format(full_check=False)
Ejemplo n.º 7
0
    def _insert_many(self, i, j, x):
        """Inserts new nonzero at each (i, j) with value x

        Here (i,j) index major and minor respectively.
        i, j and x must be non-empty, 1d arrays.
        Inserts each major group (e.g. all entries per row) at a time.
        Maintains has_sorted_indices property.
        Modifies i, j, x in place.
        """
        order = np.argsort(i, kind='mergesort')  # stable for duplicates
        i = i.take(order, mode='clip')
        j = j.take(order, mode='clip')
        x = x.take(order, mode='clip')

        do_sort = self.has_sorted_indices

        # Update index data type
        idx_dtype = get_index_dtype((self.indices, self.indptr),
                                    maxval=(self.indptr[-1] + x.size))
        self.indptr = np.asarray(self.indptr, dtype=idx_dtype)
        self.indices = np.asarray(self.indices, dtype=idx_dtype)
        i = np.asarray(i, dtype=idx_dtype)
        j = np.asarray(j, dtype=idx_dtype)

        # Collate old and new in chunks by major index
        indices_parts = []
        data_parts = []
        ui, ui_indptr = np.unique(i, return_index=True)
        ui_indptr = np.append(ui_indptr, len(j))
        new_nnzs = np.diff(ui_indptr)
        prev = 0
        for c, (ii, js, je) in enumerate(izip(ui, ui_indptr, ui_indptr[1:])):
            # old entries
            start = self.indptr[prev]
            stop = self.indptr[ii]
            indices_parts.append(self.indices[start:stop])
            data_parts.append(self.data[start:stop])

            # handle duplicate j: keep last setting
            uj, uj_indptr = np.unique(j[js:je][::-1], return_index=True)
            if len(uj) == je - js:
                indices_parts.append(j[js:je])
                data_parts.append(x[js:je])
            else:
                indices_parts.append(j[js:je][::-1][uj_indptr])
                data_parts.append(x[js:je][::-1][uj_indptr])
                new_nnzs[c] = len(uj)

            prev = ii

        # remaining old entries
        start = self.indptr[ii]
        indices_parts.append(self.indices[start:])
        data_parts.append(self.data[start:])

        # update attributes
        self.indices = np.concatenate(indices_parts)
        self.data = np.concatenate(data_parts)
        nnzs = np.asarray(np.ediff1d(self.indptr, to_begin=0), dtype=idx_dtype)
        nnzs[1:][ui] += new_nnzs
        self.indptr = np.cumsum(nnzs, out=nnzs)

        if do_sort:
            # TODO: only sort where necessary
            self.has_sorted_indices = False
            self.sort_indices()

        self.check_format(full_check=False)