Ejemplo n.º 1
0
def collimfunc(delthetra,delthetdec,lxpc=1,ra0=83.63,dec0=22.01) :
	"""
	Read LAXPC collimator response from files and give response (max unity) for
	given offset angles theta and phi
	"""
	fnamera = "LX" + str(lxpc) + "0_RA.txt"
	fnamedec = "LX" + str(lxpc) + "0_Dec.txt"

	tlpcr,raval = np.genfromtxt(fnamera,skip_header=1,unpack=True)
	ipr = ip(tlpcr,raval,k=2)
	drr = lambda z : ipr.derivatives(z)[1]
	tlrmax = fsolve(drr,16879)[0]
	tlpcd,decval = np.genfromtxt(fnamedec,skip_header=1,unpack=True)
	ipd = ip(tlpcd,decval,k=2)
	ddr = lambda z : ipd.derivatives(z)[1]
	tldmax = fsolve(ddr,29226)[0]

	tra,ra = np.genfromtxt('rascan.txt',skip_header=1,unpack=True)
	tdec,dec = np.genfromtxt('./decscan.txt',skip_header=1,unpack=True)
	poltra = np.polyfit(ra-ra0,tra,1)
	poltdec = np.polyfit(dec-dec0,tdec,1)#Inverting the variables for linfit
	fra = np.poly1d(poltra)
	fdec = np.poly1d(poltdec)

	timra = fra(np.rad2deg(delthetra))
	timdec = fdec(np.rad2deg(delthetdec))
	if (timra > tra.max() | timra < tra.min() | timdec > tdec.max() | timdec < \
		tdec.min()) :
	  raise ValueError("Angle out of FOV")
	return ipr(timra)/ipr(tlrmax)*ipd(timdec)/ipd(tldmax)
Ejemplo n.º 2
0
def collimfunc(delthetra,
               delthetdec,
               lxpc=1,
               ra0=83.63,
               dec0=22.01,
               full=False):
    """
    Read LAXPC collimator response from files and give response (max unity) for
    given offset angles theta and phi
    """
    #print "delthetra = "
    #print delthetra
    #print "delthetdec = "
    #print delthetdec

    fnamera = folfits + "LX" + str(lxpc) + "0_RA.txt"
    fnamedec = folfits + "LX" + str(lxpc) + "0_Dec.txt"

    tlpcr, raval = np.genfromtxt(fnamera, skip_header=1, unpack=True)
    ipr = ip(tlpcr, raval, k=2)
    drr = lambda z: ipr.derivatives(z)[1]
    tlrmax = fsolve(drr,
                    16879)[0]  # Note that I am using my maximas instead of
    #the ones given in Table 2 of Antia's paper. Cursory examination shows
    #difference to be minimal - must shift to Table 2 vals soon
    tlpcd, decval = np.genfromtxt(fnamedec, skip_header=1, unpack=True)
    ipd = ip(tlpcd, decval, k=2)
    ddr = lambda z: ipd.derivatives(z)[1]
    tldmax = fsolve(ddr, 29226)[0]

    tra, ra = np.genfromtxt(folfits + 'rascan.txt', skip_header=1, unpack=True)
    tdec, dec = np.genfromtxt(folfits + 'decscan.txt',
                              skip_header=1,
                              unpack=True)
    poltra = np.polyfit(ra - ra0, tra, 1)
    poltdec = np.polyfit(dec - dec0, tdec,
                         1)  #Inverting the variables for linfit
    fra = np.poly1d(poltra)
    fdec = np.poly1d(poltdec)
    rapc = (tlpcr - poltra[1]) / poltra[0]
    decpc = (tlpcd - poltdec[1]) / poltdec[0]
    if ( np.any(np.rad2deg(delthetra) > rapc.max()) | \
         np.any(np.rad2deg(delthetra) < rapc.min()) | \
         np.any(np.rad2deg(delthetdec) > decpc.max()) | \
         np.any(np.rad2deg(delthetdec) < decpc.min()) ) :
        raise MyValueError("Angle out of FOV")

    timra = fra(np.rad2deg(delthetra))
    timdec = fdec(np.rad2deg(delthetdec))
    if (full):
        dramax = (tlrmax -
                  poltra[1]) / poltra[0]  # using inverse polynom funcn
        ddecmax = (tldmax - poltdec[1]) / poltdec[0]
        return ipr(timra) / ipr(tlrmax) * ipd(timdec) / ipd(
            tldmax), dramax, ddecmax

    return ipr(timra) / ipr(tlrmax) * ipd(timdec) / ipd(tldmax)
Ejemplo n.º 3
0
def effarea(lxpc) :
  """
  Gets integrated eff. area between 3 to 80 keV
  """
  fname="effarea_lxpc.txt"
  ener,area = np.genfromtxt(fname,unpack=True)
  idnan = np.where(np.isnan(ener))[0]
  if (lxpc == 1) :
	idpc = np.arange(0,idnan[0])
  if (lxpc == 2) :
	idpc = np.arange(idnan[0]+1,idnan[1])
  if (lxpc == 3) :
	idpc = np.arange(idnan[1]+1,idnan[2])
  fn = ip(ener[idpc],area[idpc],k=1)
  #intar = quad(fn,3.0,31.90)[0] + quad(fn,32.5,80.0)[0] # breaking integral at 32 keV discontinuity
  intar = quad(fn,3.0,80.0) # no use breaking the func - see what prblm
  return intar[0]
Ejemplo n.º 4
0
def effarea(lxpc,elo=3.0,ehi=15.0) :
  """
  Gets integrated eff. area between 3 to 80 keV
  """
  fname=folfits + "effarea_lxpc.txt"
  ener,area = np.genfromtxt(fname,unpack=True)
  idnan = np.where(np.isnan(ener))[0]
  if (lxpc == 1) :
    idpc = np.arange(0,idnan[0])
  if (lxpc == 2) :
    idpc = np.arange(idnan[0]+1,idnan[1])
  if (lxpc == 3) :
    idpc = np.arange(idnan[1]+1,idnan[2])
  fn = ip(ener[idpc],area[idpc],k=1)
  #intar = quad(fn,3.0,31.90)[0] + quad(fn,32.5,80.0)[0] # breaking integral at 32 keV discontinuity
  intar = quad(fn,elo,ehi) # no use breaking the func - see what prblm
  #intar = romb(area[idpc],ener[idpc],elo,ehi) # why not use discrete integration ?
  geomar = 3600 # cm^2 100cm x 36 cm (and 15 cm depth - see http://www.tifr.res.in/~astrosat_laxpc/specification.html)
  return intar[0]/(geomar*(ehi - elo))
Ejemplo n.º 5
0
def interpolate_power(spec,
                      mode="linear",
                      domain=None,
                      kindex=None,
                      newkindex=None,
                      loglog=False,
                      **kwargs):
    """
        Interpolates a given power spectrum at new k(-indices).

        Parameters
        ----------
        spec : {scalar, list, array, field, function}
            The power spectrum. A scalars is interpreted as a constant
            spectrum.
        mode : string
            String specifying the interpolation scheme, supported
            schemes are (default: "linear"):

            - "linear"
            - "nearest"
            - "zero"
            - "slinear"
            - "quadratic"
            - "cubic"

        domain : space, *optional*
            The space wherein the power spectrum is defined (default: None).
        kindex : numpy.ndarray, *optional*
            Scales corresponding to each band in the old power spectrum;
            can be retrieved from `domain` (default: None).
        newkindex : numpy.ndarray, *optional*
            Scales corresponding to each band in the new power spectrum;
            can be retrieved from `domain` if `kindex` is given
            (default: None).
        loglog : bool, *optional*
            Flag specifying whether the interpolation is done on log-log-scale
            (ignoring the monopole) or not (default: False)

        Returns
        -------
        newspec : numpy.ndarray
            The interpolated power spectrum.

        Other Parameters
        ----------------
        log : bool, *optional*
            Flag specifying if the spectral binning is performed on logarithmic
            scale or not; if set, the number of used bins is set
            automatically (if not given otherwise); by default no binning
            is done (default: None).
        nbin : integer, *optional*
            Number of used spectral bins; if given `log` is set to ``False``;
            integers below the minimum of 3 induce an automatic setting;
            by default no binning is done (default: None).
        binbounds : {list, array}, *optional*
            User specific inner boundaries of the bins, which are preferred
            over the above parameters; by default no binning is done
            (default: None).            vmin : {scalar, list, ndarray, field}, *optional*
            Lower limit of the uniform distribution if ``random == "uni"``
            (default: 0).

        See Also
        --------
        scipy.interpolate.interp1d

        Raises
        ------
        Exception, IndexError, TypeError, ValueError
            If some input is invalid.
        ValueError
            If an interpolation is flawed.

    """
    ## check implicit kindex
    if (kindex is None):
        if (isinstance(domain, space)):
            try:
                domain.set_power_indices(**kwargs)
            except:
                raise ValueError(
                    about._errors.cstring("ERROR: invalid input."))
            else:
                kindex = domain.power_indices.get("kindex")
        else:
            raise TypeError(
                about._errors.cstring("ERROR: insufficient input."))
        ## check power spectrum
        spec = domain.enforce_power(spec, size=np.size(kindex))
        ## check explicit newkindex
        if (newkindex is None):
            raise Exception(
                about._errors.cstring("ERROR: insufficient input."))
        else:
            newkindex = np.sort(np.real(
                np.array(newkindex,
                         dtype=domain.vol.dtype).flatten(order='C')),
                                axis=0,
                                kind="quicksort",
                                order=None)
    ## check explicit kindex
    else:
        kindex = np.sort(np.real(
            np.array(kindex, dtype=None).flatten(order='C')),
                         axis=0,
                         kind="quicksort",
                         order=None)

        ## check power spectrum
        if (isinstance(spec, field)):
            spec = spec.val.astype(kindex.dtype)
        elif (callable(spec)):
            try:
                spec = np.array(spec(kindex), dtype=None)
            except:
                TypeError(
                    about._errors.cstring(
                        "ERROR: invalid power spectra function.")
                )  ## exception in ``spec(kindex)``
        elif (np.isscalar(spec)):
            spec = np.array([spec], dtype=None)
        else:
            spec = np.array(spec, dtype=None)
        ## drop imaginary part
        spec = np.real(spec)
        ## check finiteness and positivity (excluding null)
        if (not np.all(np.isfinite(spec))):
            raise ValueError(
                about._errors.cstring("ERROR: infinite value(s)."))
        elif (np.any(spec < 0)):
            raise ValueError(
                about._errors.cstring("ERROR: nonpositive value(s)."))
        elif (np.any(spec == 0)):
            about.warnings.cprint("WARNING: nonpositive value(s).")
        size = np.size(kindex)
        ## extend
        if (np.size(spec) == 1):
            spec = spec * np.ones(size, dtype=spec.dtype, order='C')
        ## size check
        elif (np.size(spec) < size):
            raise ValueError(
                about._errors.cstring("ERROR: size mismatch ( " +
                                      str(np.size(spec)) + " < " + str(size) +
                                      " )."))
        elif (np.size(spec) > size):
            about.warnings.cprint("WARNING: power spectrum cut to size ( == " +
                                  str(size) + " ).")
            spec = spec[:size]

        ## check implicit newkindex
        if (newkindex is None):
            if (isinstance(domain, space)):
                try:
                    domain.set_power_indices(**kwargs)
                except:
                    raise ValueError(
                        about._errors.cstring("ERROR: invalid input."))
                else:
                    newkindex = domain.power_indices.get("kindex")
            else:
                raise TypeError(
                    about._errors.cstring("ERROR: insufficient input."))
        ## check explicit newkindex
        else:
            newkindex = np.sort(np.real(
                np.array(newkindex, dtype=None).flatten(order='C')),
                                axis=0,
                                kind="quicksort",
                                order=None)

    ## check bounds
    if (kindex[0] < 0) or (newkindex[0] < 0):
        raise ValueError(about._errors.cstring("ERROR: invalid input."))
    if (np.any(newkindex > kindex[-1])):
        about.warnings.cprint("WARNING: interpolation beyond upper bound.")
        ## continuation extension by point mirror
        nmirror = np.size(kindex) - np.searchsorted(
            kindex, 2 * kindex[-1] - newkindex[-1], side='left') + 1
        spec = np.r_[spec,
                     np.exp(2 * np.log(spec[-1]) -
                            np.log(spec[-nmirror:-1][::-1]))]
        kindex = np.r_[kindex, (2 * kindex[-1] - kindex[-nmirror:-1][::-1])]
    ## interpolation
    if (loglog):
        ## map to log-log-scale ignoring monopole
        logspec = np.log(spec[1:])
        logspec = ip(np.log(kindex[1:]),
                     logspec,
                     kind=mode,
                     axis=0,
                     copy=True,
                     bounds_error=True,
                     fill_value=np.NAN)(np.log(newkindex[1:]))
        newspec = np.concatenate([[spec[0]], np.exp(logspec)])
    else:
        newspec = ip(kindex,
                     spec,
                     kind=mode,
                     axis=0,
                     copy=True,
                     bounds_error=True,
                     fill_value=np.NAN)(newkindex)
    ## check new power spectrum
    if (not np.all(np.isfinite(newspec))):
        raise ValueError(about._errors.cstring("ERROR: infinite value(s)."))
    elif (np.any(newspec < 0)):
        raise ValueError(about._errors.cstring("ERROR: nonpositive value(s)."))
    elif (np.any(newspec == 0)):
        about.warnings.cprint("WARNING: nonpositive value(s).")

    return newspec
Ejemplo n.º 6
0
def interpolate_power(spec,mode="linear",domain=None,kindex=None,newkindex=None,**kwargs):
    """
        Interpolates a given power spectrum at new k(-indices).

        Parameters
        ----------
        spec : {scalar, list, array, field, function}
            The power spectrum. A scalars is interpreted as a constant
            spectrum.
        mode : string
            String specifying the interpolation scheme, supported
            schemes are (default: "linear"):

            - "linear"
            - "nearest"
            - "zero"
            - "slinear"
            - "quadratic"
            - "cubic"

        domain : space, *optional*
            The space wherein the power spectrum is defined (default: None).
        kindex : numpy.ndarray, *optional*
            Scales corresponding to each band in the old power spectrum;
            can be retrieved from `domain` (default: None).
        newkindex : numpy.ndarray, *optional*
            Scales corresponding to each band in the new power spectrum;
            can be retrieved from `domain` if `kindex` is given
            (default: None).

        Returns
        -------
        newspec : numpy.ndarray
            The interpolated power spectrum.

        Other Parameters
        ----------------
        log : bool, *optional*
            Flag specifying if the spectral binning is performed on logarithmic
            scale or not; if set, the number of used bins is set
            automatically (if not given otherwise); by default no binning
            is done (default: None).
        nbin : integer, *optional*
            Number of used spectral bins; if given `log` is set to ``False``;
            integers below the minimum of 3 induce an automatic setting;
            by default no binning is done (default: None).
        binbounds : {list, array}, *optional*
            User specific inner boundaries of the bins, which are preferred
            over the above parameters; by default no binning is done
            (default: None).            vmin : {scalar, list, ndarray, field}, *optional*
            Lower limit of the uniform distribution if ``random == "uni"``
            (default: 0).

        See Also
        --------
        scipy.interpolate.interp1d

        Raises
        ------
        Exception, IndexError, TypeError, ValueError
            If some input is invalid.
        ValueError
            If an interpolation is flawed.

    """
    ## check implicit kindex
    if(kindex is None):
        if(isinstance(domain,space)):
            try:
                domain.set_power_indices(**kwargs)
            except:
                raise ValueError(about._errors.cstring("ERROR: invalid input."))
            else:
                kindex = domain.power_indices.get("kindex")
        else:
            raise TypeError(about._errors.cstring("ERROR: insufficient input."))
        ## check power spectrum
        spec = domain.enforce_power(spec,size=np.size(kindex))
        ## check explicit newkindex
        if(newkindex is None):
            raise Exception(about._errors.cstring("ERROR: insufficient input."))
        else:
            newkindex = np.sort(np.real(np.array(newkindex,dtype=domain.vol.dtype).flatten(order='C')),axis=0,kind="quicksort",order=None)
    ## check explicit kindex
    else:
        kindex = np.sort(np.real(np.array(kindex,dtype=None).flatten(order='C')),axis=0,kind="quicksort",order=None)

        ## check power spectrum
        if(isinstance(spec,field)):
            spec = spec.val.astype(kindex.dtype)
        elif(callable(spec)):
            try:
                spec = np.array(spec(kindex),dtype=kindex.dtype)
            except:
                TypeError(about._errors.cstring("ERROR: invalid power spectra function.")) ## exception in ``spec(kindex)``
        elif(np.isscalar(spec)):
            spec = np.array([spec],dtype=kindex.dtype)
        else:
            spec = np.array(spec,dtype=kindex.dtype)
        ## drop imaginary part
        spec = np.real(spec)
        ## check finiteness and positivity (excluding null)
        if(not np.all(np.isfinite(spec))):
            raise ValueError(about._errors.cstring("ERROR: infinite value(s)."))
        elif(np.any(spec<0)):
            raise ValueError(about._errors.cstring("ERROR: nonpositive value(s)."))
        elif(np.any(spec==0)):
            about.warnings.cprint("WARNING: nonpositive value(s).")
        size = np.size(kindex)
        ## extend
        if(np.size(spec)==1):
            spec = spec*np.ones(size,dtype=spec.dtype,order='C')
        ## size check
        elif(np.size(spec)<size):
            raise ValueError(about._errors.cstring("ERROR: size mismatch ( "+str(np.size(spec))+" < "+str(size)+" )."))
        elif(np.size(spec)>size):
            about.warnings.cprint("WARNING: power spectrum cut to size ( == "+str(size)+" ).")
            spec = spec[:size]

        ## check implicit newkindex
        if(newkindex is None):
            if(isinstance(domain,space)):
                try:
                    domain.set_power_indices(**kwargs)
                except:
                    raise ValueError(about._errors.cstring("ERROR: invalid input."))
                else:
                    newkindex = domain.power_indices.get("kindex")
            else:
                raise TypeError(about._errors.cstring("ERROR: insufficient input."))
        ## check explicit newkindex
        else:
            newkindex = np.sort(np.real(np.array(newkindex,dtype=None).flatten(order='C')),axis=0,kind="quicksort",order=None)

    ## check bounds
    if(kindex[0]<0)or(newkindex[0]<0):
        raise ValueError(about._errors.cstring("ERROR: invalid input."))
    if(np.any(newkindex>kindex[-1])):
        about.warnings.cprint("WARNING: interpolation beyond upper bound.")
        ## continuation extension by point mirror
        nmirror = np.size(kindex)-np.searchsorted(kindex,2*kindex[-1]-newkindex[-1],side='left')+1
        spec = np.r_[spec,np.exp(2*np.log(spec[-1])-np.log(spec[-nmirror:-1][::-1]))]
        kindex = np.r_[kindex,(2*kindex[-1]-kindex[-nmirror:-1][::-1])]
    ## interpolation
    newspec = ip(kindex,spec,kind=mode,axis=0,copy=True,bounds_error=True,fill_value=np.NAN)(newkindex)
    ## check new power spectrum
    if(not np.all(np.isfinite(newspec))):
        raise ValueError(about._errors.cstring("ERROR: infinite value(s)."))
    elif(np.any(newspec<0)):
        raise ValueError(about._errors.cstring("ERROR: nonpositive value(s)."))
    elif(np.any(newspec==0)):
        about.warnings.cprint("WARNING: nonpositive value(s).")

    return newspec
Ejemplo n.º 7
0
from mpl_toolkits.mplot3d import Axes3D
from scipy.interpolate import InterpolatedUnivariateSpline as ip
from scipy.optimize import fsolve
import matplotlib.cm as cm

folfits="../../"
lxpc=3
ra0 = 83.63
dec0 = 22.01
full = False
sz= 100
fnamera = folfits + "LX" + str(lxpc) + "0_RA.txt"
fnamedec = folfits + "LX" + str(lxpc) + "0_Dec.txt"

tlpcr,raval = np.genfromtxt(fnamera,skip_header=1,unpack=True)
ipr = ip(tlpcr,raval,k=2)
drr = lambda z : ipr.derivatives(z)[1]
tlrmax = fsolve(drr,16879)[0] # Note that I am using my maximas instead of
#the ones given in Table 2 of Antia's paper. Cursory examination shows
#difference to be minimal - must shift to Table 2 vals soon
tlpcd,decval = np.genfromtxt(fnamedec,skip_header=1,unpack=True)
ipd = ip(tlpcd,decval,k=2)
ddr = lambda z : ipd.derivatives(z)[1]
tldmax = fsolve(ddr,29226)[0]

tra,ra = np.genfromtxt(folfits + 'rascan.txt',skip_header=1,unpack=True)
tdec,dec = np.genfromtxt(folfits + 'decscan.txt',skip_header=1,unpack=True)
poltra = np.polyfit(ra-ra0,tra,1)
poltdec = np.polyfit(dec-dec0,tdec,1)#Inverting the variables for linfit
fra = np.poly1d(poltra)
fdec = np.poly1d(poltdec)