Ejemplo n.º 1
0
def getCircularBounds(fitCloud=None,width=64,height=64,smoothing=0.01):
    circumference = 2*(width+height)
    
    if not fitCloud is None:
        cx = np.mean(fitCloud[:,0])
        cy = np.mean(fitCloud[:,1])
        r = 0.5* max( np.max(fitCloud[:,0])- np.min(fitCloud[:,0]),np.max(fitCloud[:,1])- np.min(fitCloud[:,1]))
    else:
        r = circumference /(2.0*math.pi)
        cx = cy = r
    perimeterPoints = np.zeros((circumference,2),dtype=float)
    for i in range(circumference):
        angle = (2.0*math.pi)*float(i) / circumference - math.pi * 0.5 
        perimeterPoints[i][0] = cx + r * math.cos(angle)
        perimeterPoints[i][1] = cy + r * math.sin(angle)
        
        
    bounds = {'top':perimeterPoints[0:width],
              'right':perimeterPoints[width-1:width+height-1],
              'bottom':perimeterPoints[width+height-2:2*width+height-2],
              'left':perimeterPoints[2*width+height-3:]}
    
    bounds['s_top'],u = interpolate.splprep([bounds['top'][:,0], bounds['top'][:,1]],s=smoothing)
    bounds['s_right'],u = interpolate.splprep([bounds['right'][:,0],bounds['right'][:,1]],s=smoothing)
    bounds['s_bottom'],u = interpolate.splprep([bounds['bottom'][:,0],bounds['bottom'][:,1]],s=smoothing)
    bounds['s_left'],u = interpolate.splprep([bounds['left'][:,0],bounds['left'][:,1]],s=smoothing)
   
    
    return bounds
Ejemplo n.º 2
0
def interpolation_polynom(path,grad):
#    data=np.ndarray(shape=(len(path),3),dtype=float)   #create an array of float type for the input points
#    #fill the array with the Pathdata
#    a=path[0]
#    b=path[1]
#    c=path[2]
#    for i in range(len(a)):
#        data[i,0]=a[i]
#        data[i,1]=b[i]
#        data[i,2]=c[i]
#    #arrange the data to use the function
#    data = data.transpose()
    #interpolate polynom degree 1
    if grad==1:
        tck, u= interpolate.splprep(path,k=1,s=10)
        path = interpolate.splev(np.linspace(0,1,200), tck)
    #interpolate polynom degree 2
    if grad==2:
        tck, u= interpolate.splprep(path,k=2,s=10)
        path = interpolate.splev(np.linspace(0,1,200), tck)
    #interpolate polynom degree 3
    if grad==3:
        tck, u= interpolate.splprep(path, w=None, u=None, ub=None, ue=None, k=3, task=0, s=0.3, t=None, full_output=0, nest=None, per=0, quiet=1)
        path = interpolate.splev(np.linspace(0,1,200), tck)
    return path
Ejemplo n.º 3
0
def joinJoints(j1, j2):
    assert(j1.dtype==j2.dtype)
    atype = j1.dtype
    param  = np.array([0,0.33, 0.66, 1])



    j1_r  = np.concatenate([j1['r_arm'], [j1['r_gripper']]])
    j2_r  = np.concatenate([j2['r_arm'], [j2['r_gripper']]])
    j1_l  = np.concatenate([j1['l_arm'], [j1['l_gripper']]])
    j2_l  = np.concatenate([j2['l_arm'], [j2['l_gripper']]])
    

    combined_r  = np.concatenate([[j1_r], [0.67*j1_r + 0.33*j2_r], [0.33*j1_r + 0.67*j2_r], [j2_r]])
    combined_l  = np.concatenate([[j1_l], [0.67*j1_l + 0.33*j2_l], [0.33*j1_l + 0.67*j2_l], [j2_l]])
    
    N = 100
    
    (r_tck, _) = si.splprep(combined_r.T, s=0.3, u=param, k=3)                                 
    smooth_r = np.r_[si.splev(np.linspace(0,1,N), r_tck, der=0)].T                               
    
    (l_tck, _) = si.splprep(combined_l.T, s=0.3, u=param, k=3)                                 
    smooth_l   = np.r_[si.splev(np.linspace(0,1,N), l_tck, der=0)].T                               
    

    smooth  = np.zeros(N, dtype=atype)
    for i in xrange(0,N):
        smooth[i]['r_arm'][:]     = smooth_r[i][:-1]
        smooth[i]['r_gripper']    = smooth_r[i][-1]
        smooth[i]['l_arm'][:]     = smooth_l[i][:-1]
        smooth[i]['l_gripper']    = smooth_l[i][-1]
    
    return smooth
Ejemplo n.º 4
0
def makeSpline(pointList,smPnts):   
    x = [p[0] for p in pointList]
    y = [p[1] for p in pointList] 
        
    xRed = [p[0] for p in smPnts]
    yRed = [p[1] for p in smPnts]

#    print xRed
#    print yRed                                     
    tck,uout = splprep([xRed,yRed],s=0.,k=2,per=False)
    tckOri, uout = splprep([x,y],s=0.,k=2,per=False)
                                
    N=300
                
    uout = list((float(i) / N for i in xrange(N + 1)))
                            
    xOri, yOri = splev(uout,tckOri)                        
    xSp,ySp = splev(uout,tck)         
                
    import dtw
    diff = dtw.dynamicTimeWarp(zip(xOri,yOri), zip(xSp,ySp))
                
    err =  diff/len(xSp)
        
    return tck,err
Ejemplo n.º 5
0
def muDDot(time,mu):
    tck,uout = interpolate.splprep([time,mu],s=0.,k=2,per=False)
    dx,dy = interpolate.splev(uout,tck,der=1)
    mudot = dy/dx
    tck,uout = interpolate.splprep([time,mudot],s=0.,k=2,per=False)
    ddx,ddy = interpolate.splev(uout,tck,der=1)
    muddot = ddy/ddx
    return muddot
Ejemplo n.º 6
0
def midcrossings(a, b=None, thresh=1e-3, k=5):
    """usage res = midcrossings([x,] y)

    returns fwhm of y (a function with a single maximum value)
    from spline-interpolated midpoint crossings"""
    if b == None:
        y = array(a)
        x = arange(y)
    else:
        x = array(a)
        y = array(b)
    try:
        assert x.shape[0] == y.shape[0]
    except AssertionError:
        print "x and y must be same length"
        return None
    maxind = where(y == y.max())[0].flatten()[0]  # uses only first max pt

    (y1, y2) = y[:maxind], y[maxind:]
    (x1, x2) = x[:maxind], x[maxind:]

    s = 1.0
    nest = -1
    interpvals = linspace(0, 1, 251)
    # 251 simply gives enough points to give one point close to 0.5

    print "thresholding to:", thresh
    # lower half
    nob1 = where(y1 > thresh)
    # ^ need to ignore baseline values when fitting splines
    y1tofit = y1[nob1] / y1[nob1].max()

    tckp, u = splprep([y1tofit, x1[nob1]], s=s, k=k, nest=nest)
    y1p, x1p = splev(interpvals, tckp)
    dtohalf = abs(y1p - 0.5)
    # 0.5 because want width at _half_ max
    closest = where(dtohalf == dtohalf.min())
    lowval = x1p[closest]

    # upper half
    nob2 = where(y2 > thresh)
    y2tofit = y2[nob2] / y2[nob2].max()
    tckp, u = splprep([y2tofit, x2[nob2]], s=s, k=k, nest=nest)
    y2p, x2p = splev(interpvals, tckp)
    dtohalf = abs(y2p - 0.5)
    closest = where(dtohalf == dtohalf.min())
    hival = x2p[closest]

    if graphic:
        fwhm = hival - lowval
        figure(2)
        clf()
        plot(x, y / y.max(), "bx-", label="original")
        plot(x1p, y1p, "r-", x2p, y2p, "r-", label="spline fit")
        plot((lowval, hival), (0.5, 0.5), "k-", label="width")

    return fwhm
 def __init__(self, pts, V, dV=None, V_spline_samples=100,
              extend_to_minima=False, reeval_distances=True):
     assert len(pts) > 1
     # 1. Find derivs
     dpts = _pathDeriv(pts)
     # 2. Extend the path
     if extend_to_minima:
         def V_lin(x, p0, dp0, V): return V(p0+x*dp0)
         # extend at the front of the path
         xmin = optimize.fmin(V_lin, 0.0, args=(pts[0], dpts[0], V), 
                              xtol=1e-6, disp=0)[0]
         if xmin > 0.0: xmin = 0.0
         nx = np.ceil(abs(xmin)-.5) + 1
         x = np.linspace(xmin, 0, nx)[:, np.newaxis]
         pt_ext = pts[0] + x*dpts[0]
         pts = np.append(pt_ext, pts[1:], axis=0)
         # extend at the end of the path
         xmin = optimize.fmin(V_lin, 0.0, args=(pts[-1], dpts[-1], V), 
                              xtol=1e-6, disp=0)[0]
         if xmin < 0.0: xmin = 0.0
         nx = np.ceil(abs(xmin)-.5) + 1
         x = np.linspace(xmin, 0, nx)[::-1, np.newaxis]
         pt_ext = pts[-1] + x*dpts[-1]
         pts = np.append(pts[:-1], pt_ext, axis=0)
         # Recalculate the derivative
         dpts = _pathDeriv(pts)
     # 3. Find knot positions and fit the spline.
     pdist = integrate.cumtrapz(np.sqrt(np.sum(dpts*dpts, axis=1)), 
                                initial=0.0)
     self.L = pdist[-1]
     k = min(len(pts)-1, 3) # degree of the spline
     self._path_tck = interpolate.splprep(pts.T, u=pdist, s=0, k=k)[0]
     # 4. Re-evaluate the distance to each point.
     if reeval_distances:
         def dpdx(_, x): 
             dp = np.array(interpolate.splev(x, self._path_tck, der=1))
             return np.sqrt(np.sum(dp*dp))
         pdist = integrate.odeint(dpdx, 0., pdist,
                                  rtol=0, atol=pdist[-1]*1e-8)[:,0]
         self.L = pdist[-1]
         self._path_tck = interpolate.splprep(pts.T, u=pdist, s=0, k=k)[0]
     # Now make the potential spline.
     self._V = V
     self._dV = dV
     self._V_tck = None
     if V_spline_samples is not None:
         x = np.linspace(0,self.L,V_spline_samples)
         # extend 20% beyond this so that we more accurately model the
         # path end points
         x_ext = np.arange(x[1], self.L*.2, x[1])
         x = np.append(-x_ext[::-1], x)
         x = np.append(x, self.L+x_ext)
         y = self.V(x)
         self._V_tck = interpolate.splrep(x,y,s=0)
Ejemplo n.º 8
0
def correct_te(tck, k):
    """Corrects the trailing edge of a flatback airfoil.

    This corrections will make the trailing edge of the normalized flatback
    airfoil align with the y-axis.

    Args:
        tck (tuple): A tuple (t,c,k) containing the vector of knots, the
            B-spline coefficients, and the degree of the spline.
        k (int): The degree of the returned bspline

    Return:
        tuple: A tuple (t,c,k) containing the vector of knots, the
            B-spline coefficients, and the degree of the spline.

    """
    try:
        u0_x = bspl_find_x(x_loc=1.0, start=0.0, end=0.1, tck=tck)
    except ValueError:
        u0_x = None
    try:
        u1_x = bspl_find_x(x_loc=1.0, start=0.9, end=1.0, tck=tck)
    except ValueError:
        u1_x = None

    if u0_x is not None and u1_x is not None:
        u = np.linspace(u0_x, u1_x, 1000)
        points = interpolate.splev(u, tck, der=0)
        tck_norm_mod = interpolate.splprep(points, s=0.0, k=k)
    elif u0_x is None and u1_x is not None:
        u = np.linspace(0.0, u1_x, 1000)
        points = interpolate.splev(u, tck, der=0)
        p_u0 = [points[0][0], points[1][0]]
        u0_grad = interpolate.splev(0.0, tck, der=1)
        dx = 1.0 - p_u0[0]
        dy = dx * u0_grad[1] / u0_grad[0]
        p_new = [1.0, p_u0[1] + dy]
        x_pts = np.insert(points[0], 0, p_new[0])
        y_pts = np.insert(points[1], 0, p_new[1])
        tck_norm_mod, _ = interpolate.splprep([x_pts, y_pts], s=0.0, k=k)
    elif u0_x is not None and u1_x is None:
        u = np.linspace(u0_x, 1.0, 1000)
        points = interpolate.splev(u, tck, der=0)
        p_u1 = [points[0][-1], points[1][-1]]
        u1_grad = interpolate.splev(1.0, tck, der=1)
        dx = 1.0 - p_u1[0]
        dy = dx * u1_grad[1] / u1_grad[0]
        p_new = [1.0, p_u1[1] + dy]
        x_pts = np.append(points[0], p_new[0])
        y_pts = np.append(points[1], p_new[1])
        tck_norm_mod, _ = interpolate.splprep([x_pts, y_pts], s=0.0, k=k)
    else:
        raise ValueError('Something is wrong with the bspline!')
    return tck_norm_mod
Ejemplo n.º 9
0
    def interpolate(self, fit_x, fit_y, smoothing = None, newu = None):
        if smoothing is not None:
            tck, u = interpolate.splprep([fit_x, fit_y], k=4, s=smoothing)
        else:
            tck, u = interpolate.splprep([fit_x, fit_y], k=4)

        if (newu is not None):
            u = newu

        out = interpolate.splev(u, tck)
        return out, u, tck
Ejemplo n.º 10
0
    def test_splprep_errors(self):
        # test that both "old" and "new" code paths raise for x.ndim > 2
        x = np.arange(3*4*5).reshape((3, 4, 5))
        with assert_raises(ValueError, message="too many values to unpack"):
            splprep(x)
        with assert_raises(ValueError, message="too many values to unpack"):
            _impl.splprep(x)

        # input below minimum size
        x = np.linspace(0, 40, num=3)
        with assert_raises(TypeError, message="m > k must hold"):
            splprep([x])
        with assert_raises(TypeError, message="m > k must hold"):
            _impl.splprep([x])

        # automatically calculated parameters are non-increasing
        # see gh-7589
        x = [-50.49072266, -50.49072266, -54.49072266, -54.49072266]
        with assert_raises(ValueError, message="Invalid inputs"):
            splprep([x])
        with assert_raises(ValueError, message="Invalid inputs"):
            _impl.splprep([x])

        # given non-increasing parameter values u
        x = [1, 3, 2, 4]
        u = [0, 0.3, 0.2, 1]
        with assert_raises(ValueError, message="Invalid inputs"):
            splprep(*[[x], None, u])
Ejemplo n.º 11
0
    def test_splprep(self):
        x = np.arange(15).reshape((3, 5))
        b, u = splprep(x)
        tck, u1 = _impl.splprep(x)

        # test the roundtrip with splev for both "old" and "new" output
        assert_allclose(u, u1, atol=1e-15)
        assert_allclose(splev(u, b), x, atol=1e-15)
        assert_allclose(splev(u, tck), x, atol=1e-15)

        # cover the ``full_output=True`` branch
        (b_f, u_f), _, _, _ = splprep(x, s=0, full_output=True)
        assert_allclose(u, u_f, atol=1e-15)
        assert_allclose(splev(u_f, b_f), x, atol=1e-15)
Ejemplo n.º 12
0
 def _smooth_segs(self,seg,kind,avg=False):
     useg,per=unique_vec(seg)
     if len(useg)>self.k: #check if long enough to smooth
         tck,u=splprep(useg.T,s=self.smooth,k=self.k,per=per)
         seg=np.vstack(splev(self.unew,tck)).T
         if (self.smooth>0) and (avg):
             #when smooth>0 you get different results if you reverse the order of the points
             #do it both ways and take the average of the two solutions
             #and return that instead (needed for filled contours to line up correctly)
             tck2,u2=splprep(useg[::-1].T,s=self.smooth,k=self.k,per=per)
             seg2=np.vstack(splev(self.unew[::-1],tck2)).T
             seg=np.dstack([seg,seg2]).mean(axis=2)
         if kind is not None:
             kind=self.kinds_fill
     return seg,kind
Ejemplo n.º 13
0
def spline_fitted_magnitudes_brute(times, magnitudes, errors, requested_times):
    # Spline parameters:
    s=len(times)/100. # smoothness parameter
    k=5 # spline order
    nest=-1 # estimate of number of knots needed (-1 = maximal)

    # Find the knot points.
    tckp, u = splprep([times, magnitudes],s=s,k=k,nest=-1)

    # Evaluate spline, including interpolated points.
    new_times, new_magnitudes = splev(linspace(0,1,len(times)),tckp)

    # Define an interpolating function along the spline fit.
    interpolating_function = interp1d(new_times, new_magnitudes, kind = "linear")

    # Interpolate linerarly along the spline at the requested times.
    fitted_magnitudes = interpolating_function(requested_times)

    fitted_errors = array([])
    for n in range(len(requested_times)):
        for m in range(len(times)-1):
            if (requested_times[n] > times[m]) and (requested_times[n] < times[m+1]):
                error = (errors[m] + errors[m+1])*0.5
                fitted_errors = append(fitted_errors, error)
    return fitted_magnitudes, fitted_errors
Ejemplo n.º 14
0
def spline_fitted_magnitudes(times, magnitudes, errors, requested_times, mindiff = None):
    # Spline parameters:
    k=5 # spline order
    nest=-1 # estimate of number of knots needed (-1 = maximal)
    
    fitted_errors = empty(0)
    fitted_magnitudes = empty(0)
    for rtime, window in window_creator(times, requested_times, mindiff = mindiff):
        wtimes = times[window]
        wmagnitudes = magnitudes[window]
        werrors = errors[window]
        
        # spline parameter:
        s=len(wtimes)/100. # smoothness parameter
    
        # Find the knot points.
        tckp, u = splprep([wtimes, wmagnitudes],s=s,k=k,nest=-1)
    
        # Evaluate spline, including interpolated points.
        new_times, new_magnitudes = splev(linspace(0,1,len(wtimes)),tckp)
    
        # Define an interpolating function along the spline fit.
        interpolating_function = interp1d(new_times, new_magnitudes, kind = "linear")
    
        # Interpolate linerarly along the spline at the requested times.
        fitted_magnitude = interpolating_function(rtime)
        fitted_magnitudes = append(fitted_magnitudes, fitted_magnitude)
    
        for m in range(len(wtimes)-1):
            if (rtime > wtimes[m]) and (rtime < wtimes[m+1]):
                error = (werrors[m] + werrors[m+1])*0.5
                fitted_errors = append(fitted_errors, error)
    return fitted_magnitudes, fitted_errors
Ejemplo n.º 15
0
def densify_list_xy(x, y, n=500, per=True):
    from scipy import interpolate
    if per and (x[0] != x[-1]) and (x[0] != x[-1]):
        x.append(x[0])
        y.append(y[0])
    tck, u = interpolate.splprep([x, y], s=0, k=1, per=per)
    return interpolate.splev(np.linspace(0, 1, n), tck)
def b_spline_python(x, y, z, s=0, k=3, nest=-1):
    """see http://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splprep.html for full input information"""
    from scipy.interpolate import splprep, splev

    tckp, u = splprep([x, y, z], s=s, k=k, nest=nest)
    xnew, ynew, znew = splev(u, tckp)
    return xnew, ynew, znew
Ejemplo n.º 17
0
    def test_get_point(self):
        # Stationary trajectory
        traj = Trajectory(self.control_points, pixel_size=1 * q.m, furthest_point=1 * q.m)
        np.testing.assert_equal(traj.get_point(1 * q.s), traj.control_points[0])

        tck = interp.splprep(zip(*self.control_points), s=0)[0]

        def evaluate_point(t):
            if t > 1:
                t = 1
            return interp.splev(t, tck) * q.m

        # Create velocity profile which goes until the trajectory end.
        # We need to scale the sine amplitude in order to
        # max(sin(x)) = trajectory.length
        times = np.linspace(0, 2 * np.pi, self.n) * q.s
        # Normalize for not going below zero.
        dist = (self.traj.length + self.traj.length * np.sin(times.magnitude)) * q.m

        traj = Trajectory(self.control_points, pixel_size=1 * q.m, furthest_point=1 * q.m,
                          time_dist=zip(times, dist))

        for i in range(len(times)):
            np.testing.assert_almost_equal(traj.get_point(times[i]),
                                           evaluate_point(dist[i] / traj.length), decimal=4)
Ejemplo n.º 18
0
def make_joint_trajectory_with_limits(positions, vel_limits, acc_limits):
    positions = np.asarray(positions)
    vel_limits = np.asarray(vel_limits)
    acc_limits = np.asarray(acc_limits)
    n_waypoints, n_joints = positions.shape

    # estimate the time, to pick a reasonable number of samples
    t_est = (abs(positions[1:] - positions[:-1]).sum(axis=0) / vel_limits).max()
    # samples is an integer multiple of n_waypoints, so that we hit all waypoints
    upsample_ratio = max(1, int(np.ceil(t_est * 10 / n_waypoints)))
    n_samples = n_waypoints * upsample_ratio

    # upsample and smooth a little bit
    k = min(3, n_waypoints - 1)     
    (tck, _) = si.splprep(positions.T, s = .001**2*n_waypoints, u=linspace(0,1,n_waypoints), k=k) # todo: is s total or per waypoint?
    sampled_positions = r_[si.splev(linspace(0,1,n_samples),tck)].T


    velocities = np.zeros((n_samples, n_joints))
    times = np.zeros(n_samples)
    
    for i in xrange(1,n_samples):
        
        dpos = (sampled_positions[i] - sampled_positions[i-1])
        # amount of time if we're at velocity speed limit:
        dt_vel = norm(dpos / vel_limits, inf)

        # search for minimal dt that satisfies velocity and acceleration limits
        f = lambda dt: (abs(dpos/dt - velocities[i-1])/dt < acc_limits).all()
        dt = line_search(f, dt_vel)
        
        times[i] = times[i-1]+dt
        velocities[i] = dpos/dt

    return sampled_positions, velocities, times
Ejemplo n.º 19
0
 def rotate_te(self, alpha, nsamples, te_smooth=1, smoothing=0.0, degree=5,
               ins_pt=None, plot=False):
     """Splits the airfoil in two parts at the leading edge, rotates both
     parts by alpha/2.0 around the trailing edge and than reconnects both
     parts again."""
     te_point = self.get_te_point()
     u_le, le_point = self.get_le_point()
     te_smoothing = 1.0*te_smooth/100.0
     u0 = 0.0
     u1 = u_le - te_smoothing
     u2 = u_le + te_smoothing
     u3 = 1.0
     ss_pts = self._rotate_around_point(alpha=-alpha/2.0, u0=u0, u1=u1,
                                        rot_pt=te_point, nsamples=nsamples)
     ps_pts = self._rotate_around_point(alpha=alpha/2.0, u0=u2, u1=u3,
                                        rot_pt=te_point, nsamples=nsamples)
     if ins_pt is None:
         new_pts = np.vstack((ss_pts, ps_pts))
     else:
         new_pts = np.vstack((ss_pts, ins_pt, ps_pts))
     if plot:
         plt.figure('Leading edge rotation')
         plt.plot(new_pts[:, 0], new_pts[:, 1], 'or', label='fit points')
         plt.axis('equal')
         plt.grid(True)
         plt.legend()
         plt.show()
     x = [new_pts[:, 0], new_pts[:, 1]]
     self.tck, _ = interpolate.splprep(x, s=smoothing, k=degree)
     return ss_pts, ps_pts
Ejemplo n.º 20
0
 def normal_transform(self, tck_transf, nsamples, s=0.0, k=3, plot=False):
     """bla."""
     nvecs, pvecs, u = self.get_normal_vecs(nsamples=nsamples)
     amps = interpolate.splev(u, tck_transf)
     pts = []
     _, vec_len = nvecs.shape
     for i in range(vec_len):
         x = pvecs[0, i]
         y = pvecs[1, i]
         dirx = nvecs[0, i]
         diry = nvecs[1, i]
         amp = amps[i]
         lx = x+dirx*amp
         ly = y+diry*amp
         pts.append([lx, ly])
     pts = np.array(pts)
     if plot:
         plt.figure('Comparison org. airfoil vs mod. airfoil')
         plt.plot(pvecs[0, :], pvecs[1, :], label='org. airfoil')
         plt.plot(pts[:, 0], pts[:, 1], '-r', label='mod. airfoil')
         plt.axis('equal')
         plt.grid(True)
         plt.legend()
         plt.show()
     # Create bspline representation
     x = [pts[:, 0], pts[:, 1]]
     self.tck, _ = interpolate.splprep(x, s=s, k=k)
Ejemplo n.º 21
0
    def interpolate(self, distance, spline=False):

        if spline:
            spline = 2
        else:
            spline = 1

        orig_num = self.getPointNumber()
        x = []
        y = []
        x.append(self.getLat())
        y.append(self.getLon())

        while self.goToNext():
            x.append(self.getLat())
            y.append(self.getLon())

        tck, u = interpolate.splprep([x, y], s=0, k=spline)
        num = int(self.getDistance() / distance)
        x, y = interpolate.splev(np.linspace(0, 1, num), tck)

        self.points = []
        for j in range(0, len(x)):
            self.points.append((x[j], y[j]))

        self.interpolated = True
        self.len = len(self.points)
        self.rewind()
Ejemplo n.º 22
0
def unif_resample(traj, max_diff, wt = None):        
    """
    Resample a trajectory so steps have same length in joint space    
    """
    import scipy.interpolate as si
    tol = .005
    if wt is not None: 
        wt = np.atleast_2d(wt)
        traj = traj*wt
        
        
    dl = mu.norms(traj[1:] - traj[:-1],1)
    l = np.cumsum(np.r_[0,dl])
    goodinds = np.r_[True, dl > 1e-8]
    deg = min(3, sum(goodinds) - 1)
    if deg < 1: return traj, np.arange(len(traj))
    
    nsteps = max(int(np.ceil(float(l[-1])/max_diff)),2)
    newl = np.linspace(0,l[-1],nsteps)

    ncols = traj.shape[1]
    colstep = 10
    traj_rs = np.empty((nsteps,ncols)) 
    for istart in xrange(0, traj.shape[1], colstep):
        (tck,_) = si.splprep(traj[goodinds, istart:istart+colstep].T,k=deg,s = tol**2*len(traj),u=l[goodinds])
        traj_rs[:,istart:istart+colstep] = np.array(si.splev(newl,tck)).T
    if wt is not None: traj_rs = traj_rs/wt

    newt = np.interp(newl, l, np.arange(len(traj)))

    return traj_rs, newt
Ejemplo n.º 23
0
def second_derivative(xdata, inds, gt=False, s=0):
    '''
    The second derivative of d^2 xdata / d inds^2

    why inds for interpolation, not log l?
    if not using something like model number instead of log l,
    the tmin will get hidden by data with t < tmin but different
    log l. This is only a problem for very low Z.
    If I find the arg min of teff to be very close to MS_BEG it
    probably means the MS_BEG is at a lower Teff than Tmin.
    '''
    tckp, _ = splprep([inds, xdata], s=s, k=3)
    arb_arr = np.arange(0, 1, 1e-2)
    xnew, ynew = splev(arb_arr, tckp)
    # second derivative, bitches.
    ddxnew, ddynew = splev(arb_arr, tckp, der=2)
    ddyddx = ddynew / ddxnew
    # not just argmin, but must be actual min...
    try:
        if gt:
            aind = [a for a in np.argsort(ddyddx) if ddyddx[a-1] < 0][0]
        else:
            aind = [a for a in np.argsort(ddyddx) if ddyddx[a-1] > 0][0]
    except IndexError:
        return -1
    tmin_ind, _ = closest_match2d(aind, inds, xdata, xnew, ynew)
    return inds[tmin_ind]
Ejemplo n.º 24
0
def tract_prototype_mean(tractography, smooth_order, file_output=None):
    from .tract_obb import prototype_tract

    tracts = tractography.tracts()
    prototype_ix, leave_centers = prototype_tract(tracts, return_leave_centers=True)

    median_tract = tracts[prototype_ix]

    mean_tract = numpy.empty_like(median_tract)
    centers_used = set()
    for point in median_tract:
        closest_leave_center_ix = (
            ((leave_centers - point[None, :]) ** 2).sum(1)
        ).argmin()

        if closest_leave_center_ix in centers_used:
            continue

        mean_tract[len(centers_used)] = leave_centers[closest_leave_center_ix]
        centers_used.add(closest_leave_center_ix)

    mean_tract = mean_tract[:len(centers_used)]

    if smooth_order > 0:
        try:
            from scipy import interpolate

            tck, u = interpolate.splprep(mean_tract.T)
            mean_tract = numpy.transpose(interpolate.splev(u, tck))
        except ImportError:
            warn("A smooth order larger than 0 needs scipy installed")

    return Tractography([mean_tract], {}, **tractography.extra_args)
Ejemplo n.º 25
0
def testMVCgetDerivWpt(W):
    Ndim = W.shape[0]
    Nwaypoints = W.shape[1]
    dW = np.zeros((W.shape))
    ddW = np.zeros((W.shape))

    traj, tmp = splprep(W, k=5, s=0.01)
    # L = getLengthWpt(W)
    d = 0.0
    for i in range(0, Nwaypoints - 1):
        dW[:, i] = splev(d, traj, der=1)
        ddW[:, i] = splev(d, traj, der=2)
        # dW[:,i] = dW[:,i]/np.linalg.norm(dW[:,i])

        ds = np.linalg.norm(W[:, i + 1] - W[:, i])
        dv = np.linalg.norm(dW[:, i])
        dt = ds / dv
        # ddW[:,i] = ddW[:,i]/np.linalg.norm(ddW[:,i])
        print d
        d = d + dt

    dW[:, Nwaypoints - 1] = splev(d, traj, der=1)
    ddW[:, Nwaypoints - 1] = splev(d, traj, der=2)

    return [dW, ddW]
Ejemplo n.º 26
0
def linear_interp(pos1, pos2, n):
    """
    interpolate n points between pos1 and pos2
    pos1 and pose2 should be a list of triplets
    will return:
    a list of list of triplets with n+2 items (including end points)
    a list of values between 0 and 1, the parametric parameter
    """
    import numpy as np
    from scipy import interpolate
    
    n_atoms = len(pos1)
    pos = np.array([pos1,pos2])

    #this will transform the shape of coord
    #to a list of triplets, describing motion of one atom over entire path
    pos = np.reshape(np.transpose(np.reshape(pos, (2,-1))),(-1,3,2))
    new_t = np.linspace(0,1,n+2)
    new_pos = []
    for cord in pos:
        tck = interpolate.splprep(u = [0,1], x=cord, k=1, s=0)[0]
        new_pos.append(interpolate.splev(new_t, tck))        
    new_pos = np.array(new_pos)
    new_pos = np.reshape(np.transpose(np.reshape(new_pos,(3*n_atoms,-1))), (n+2, n_atoms, 3))
    return np.array(new_pos), new_t
Ejemplo n.º 27
0
def interpolation_polynom(path,grad):
    (x,y)=path.shape
    anzahl=y*40
    #interpolate polynom degree 1
    if grad==1:
        tck, u= interpolate.splprep(path,k=1,s=0.2)
        path = interpolate.splev(np.linspace(0,1,anzahl), tck)
    #interpolate polynom degree 2
    if grad==2:
        tck, u= interpolate.splprep(path,k=2,s=0.2)
        path = interpolate.splev(np.linspace(0,1,anzahl), tck)
    #interpolate polynom degree 3
    if grad==3:
        tck, u= interpolate.splprep(path, w=None, u=None, ub=None, ue=None, k=3, task=0, s=0.2, t=None, full_output=0, nest=None, per=0, quiet=1)
        path = interpolate.splev(np.linspace(0,1,anzahl), tck)
    return path
Ejemplo n.º 28
0
def unif_resample(x,n=None,tol=0,deg=None, seg_len = .02):
 
    if deg is None: deg = min(3, len(x) - 1)

    x = np.atleast_2d(x)
    x = remove_duplicate_rows(x)
    
    (tck,_) = si.splprep(x.T,k=deg,s = tol**2*len(x),u=np.linspace(0,1,len(x)))
    xup = np.array(si.splev(np.linspace(0,1, 10*len(x),.1),tck)).T
    dl = norms(xup[1:] - xup[:-1],1)
    l = np.cumsum(np.r_[0,dl])
    (tck,_) = si.splprep(xup.T,k=deg,s = tol**2*len(xup),u=l)

    if n is not None: newu = np.linspace(0,l[-1],n)
    else: newu = np.linspace(0, l[-1], l[-1]//seg_len)
    return np.array(si.splev(newu,tck)).T    
Ejemplo n.º 29
0
    def get_measurement_lines(self, tail):
        """
        determines the measurement segments that are used for the line scan
        """
        f_c = self.params['measurement/line_offset']
        f_o = 1 - f_c

        centerline = tail.centerline
        result = []
        for side in tail.sides:
            # find the line between the centerline and the ventral line
            points = []
            for p_c in centerline:
                p_o = curves.get_projection_point(side, p_c) #< outer line
                points.append((f_c*p_c[0] + f_o*p_o[0],
                               f_c*p_c[1] + f_o*p_o[1]))
                
            # do spline fitting to smooth the line
            smoothing = self.params['measurement/spline_smoothing']*len(points)
            tck, _ = interpolate.splprep(np.transpose(points),
                                         k=2, s=smoothing)
            
            points = interpolate.splev(np.linspace(-0.5, .8, 100), tck)
            points = zip(*points) #< transpose list
    
            # restrict centerline to object
            mline = geometry.LineString(points).intersection(tail.polygon)
            
            # pick longest line if there are many due to strange geometries
            if isinstance(mline, geometry.MultiLineString):
                mline = mline[np.argmax([l.length for l in mline])]
                
            result.append(np.array(mline.coords))
            
        return result   
Ejemplo n.º 30
0
 def predict_number(self):
     all_pts = []
     for w in self.canvas.children:
         if isinstance(w, Line):
             wpts = np.array(w.points)
             xs = wpts[::2]
             ys = wpts[1::2]
             try:
                 tck, u = interpolate.splprep([xs, ys], s=0)
             except Exception as e:
                 print('warn', e)
                 continue
             u_new = np.arange(np.min(u), np.max(u), 0.01)
             out = interpolate.splev(u_new, tck)
             all_pts += out
     
     img = np.zeros((560+10, 560+10)).astype(np.uint8)
     polyx = np.array(all_pts[::2]).astype(np.int)
     polyy = np.array(all_pts[1::2]).astype(np.int)
     R = 10
     from itertools import product
     for xs, ys in zip(polyx, polyy):
         for x, y in zip(xs, ys):
             circle = [(x+i, y+j) for (i, j) in product(range(-R,
                                                              R+1), repeat=2) if i**2+j**2 < R**2]
             for c in circle:
                 img[c[0], c[1]] = 128
     img = imresize(np.rot90(img), (28, 28),
                    interp='bilinear').astype('f')/np.max(img)
     plt.imshow(img, cmap='gray')
     plt.show()
     predict(img)
Ejemplo n.º 31
0
    def __init__(self, *args, **kwargs):
        """FRD(d, w)

        Construct an FRD object

        The default constructor is FRD(d, w), where w is an iterable of
        frequency points, and d is the matching frequency data.

        If d is a single list, 1d array, or tuple, a SISO system description
        is assumed. d can also be

        To call the copy constructor, call FRD(sys), where sys is a
        FRD object.

        To construct frequency response data for an existing LTI
        object, other than an FRD, call FRD(sys, omega)

        """
        smooth = kwargs.get('smooth', False)

        if len(args) == 2:
            if not isinstance(args[0], FRD) and isinstance(args[0], LTI):
                # not an FRD, but still a system, second argument should be
                # the frequency range
                otherlti = args[0]
                self.omega = array(args[1], dtype=float)
                self.omega.sort()
                numfreq = len(self.omega)

                # calculate frequency response at my points
                self.fresp = empty(
                    (otherlti.outputs, otherlti.inputs, numfreq),
                    dtype=complex)
                for k, w in enumerate(self.omega):
                    self.fresp[:, :, k] = otherlti._evalfr(w)

            else:
                # The user provided a response and a freq vector
                self.fresp = array(args[0], dtype=complex)
                if len(self.fresp.shape) == 1:
                    self.fresp = self.fresp.reshape(1, 1, len(args[0]))
                self.omega = array(args[1], dtype=float)
                if len(self.fresp.shape) != 3 or \
                        self.fresp.shape[-1] != self.omega.shape[-1] or \
                        len(self.omega.shape) != 1:
                    raise TypeError(
                        "The frequency data constructor needs a 1-d or 3-d"
                        " response data array and a matching frequency vector"
                        " size")

        elif len(args) == 1:
            # Use the copy constructor.
            if not isinstance(args[0], FRD):
                raise TypeError("The one-argument constructor can only take in"
                                " an FRD object.  Received %s." %
                                type(args[0]))
            self.omega = args[0].omega
            self.fresp = args[0].fresp
        else:
            raise ValueError("Needs 1 or 2 arguments; receivd %i." % len(args))

        # create interpolation functions
        if smooth:
            self.ifunc = empty((self.fresp.shape[0], self.fresp.shape[1]),
                               dtype=tuple)
            for i in range(self.fresp.shape[0]):
                for j in range(self.fresp.shape[1]):
                    self.ifunc[i, j], u = splprep(
                        u=self.omega,
                        x=[
                            real(self.fresp[i, j, :]),
                            imag(self.fresp[i, j, :])
                        ],
                        w=1.0 / (absolute(self.fresp[i, j, :]) + 0.001),
                        s=0.0)
        else:
            self.ifunc = None
        LTI.__init__(self, self.fresp.shape[1], self.fresp.shape[0])
Ejemplo n.º 32
0
    def lane_detection(self, state_image_full):
        '''
        ##### TODO #####
        This function should perform the road detection 

        args:
            state_image_full [96, 96, 3]

        out:
            lane_boundary1 spline
            lane_boundary2 spline
        '''

        # to gray
        # print(f'calculating spline')
        gray_state = self.cut_gray(state_image_full)

        # edge detection via gradient sum and thresholding
        gradient_sum = self.edge_detection(gray_state)
        maxima = self.find_maxima_gradient_rowwise(gradient_sum)

        # first lane_boundary points
        lane_boundary1_points, lane_boundary2_points, lane_found = \
            self.find_first_lane_point(gradient_sum)

        lane1_prev = lane_boundary1_points
        lane2_prev = lane_boundary2_points

        # if no lane was found,use lane_boundaries of the preceding step
        if lane_found:

            ##### TODO #####
            #  in every iteration:
            # 1- find maximum/edge with the lowest distance to the last lane boundary point
            # 2- append maxium to lane_boundary1_points or lane_boundary2_points
            # 3- delete maximum from maxima
            # 4- stop loop if there is no maximum left
            #    or if the distance to the next one is too big (>=100)

            row = 1
            while row < 68:
                row_max = maxima[row]

                if len(row_max) < 2:
                    break

                # sort the points according to their distence from previous lane predictions
                # also, argsort returns tha indices that can be iterated insorted order
                # hence we use A[0] and B[0] after sorting
                A = np.argsort((row_max - lane1_prev[0][0])**2)
                # print(f'A shape: {A.shape}')
                B = np.argsort((row_max - lane2_prev[0][0])**2)
                point_1 = np.array([[row_max[A[0]], row]])
                point_2 = np.array([[row_max[B[0]], row]])
                # print(f'point shape: {point_1.shape}')
                lane_boundary1_points = np.append(lane_boundary1_points,
                                                  point_1,
                                                  axis=0)
                lane_boundary2_points = np.append(lane_boundary2_points,
                                                  point_2,
                                                  axis=0)
                lane1_prev = point_1
                lane2_prev = point_2
                row += 1

            # lane_boundary 1
            lane_boundary1 = []
            # lane_boundary 2
            lane_boundary2 = []
            ################

            ##### TODO #####
            # spline fitting using scipy.interpolate.splprep
            # and the arguments self.spline_smoothness
            #
            # if there are more lane_boundary points points than spline parameters
            # else use perceding spline
            if lane_boundary1_points.shape[
                    0] > 4 and lane_boundary2_points.shape[0] > 4:

                # Pay attention: the first lane_boundary point might occur twice
                # lane_boundary 1
                lane_boundary1, _ = splprep(lane_boundary1_points.T,
                                            k=3,
                                            s=self.spline_smoothness)
                # lane_boundary 2
                lane_boundary2, _ = splprep(lane_boundary2_points.T,
                                            k=3,
                                            s=self.spline_smoothness)
                # print("temp")

            else:
                lane_boundary1 = self.lane_boundary1_old
                lane_boundary2 = self.lane_boundary2_old
            ################

        else:
            lane_boundary1 = self.lane_boundary1_old
            lane_boundary2 = self.lane_boundary2_old

        self.lane_boundary1_old = lane_boundary1
        self.lane_boundary2_old = lane_boundary2

        # output the spline
        # print(f'returned spline')
        return lane_boundary1, lane_boundary2
Ejemplo n.º 33
0
def main():
    # Initialize the spline
    c = np.array([100, 100])
    R = 50
    ctrl_points_nb = 9
    phi = np.linspace(0, 2 * np.pi, ctrl_points_nb + 1)
    x_init = c[0] + R * np.cos(phi)
    y_init = c[1] + R * np.sin(phi)
    x_init[ctrl_points_nb] = x_init[0]
    y_init[ctrl_points_nb] = y_init[0]
    dat = np.array([x_init, y_init])
    tck, _ = splprep(dat, s=0, per=1, k=3)
    knots = tck[0]
    ctrl_pts = np.transpose(tck[1])
    deg = tck[2]
    spl = BSplineCLG(knots, ctrl_pts, deg, is_periodic=True)
    go_on = True
    while go_on:
        # Choose the control point that you want to move
        spl = BSplineCLG(knots, ctrl_pts, deg, is_periodic=True)
        nb_dct_total = 1000
        [x, y] = np.transpose(spl(np.linspace(0, 1, nb_dct_total)))
        plt.plot(x, y)
        nth = raw_input('Enter the nth point: ')
        nth = int(nth)
        nbr_lib = len(spl.get_ctrl_pts(only_free=True))
        if nth > nbr_lib:
            raise ValueError('Too big')
        lib = np.transpose(spl.get_ctrl_pts(only_free=True))
        all = plt.scatter(lib[0], lib[1], s=40)
        # Decide the range of influence of the choosen point and plot the figure
        if knots[nth] < 0:
            # For these point satisfying this condition, each of them affect two
            # internal parts in the curve
            ust1 = 0
            ued1 = knots[nth + deg + 1]
            ust2 = knots[nth + nbr_lib]
            ued2 = 1
            nb_dct_1 = (ued1 - ust1) * nb_dct_total
            nb_dct_2 = (ued2 - ust2) * nb_dct_total
            [xth1, yth1] = np.transpose(spl(np.linspace(ust1, ued1, nb_dct_1)))
            [xth2, yth2] = np.transpose(spl(np.linspace(ust2, ued2, nb_dct_2)))
            plt.plot(xth1, yth1, 'r')
            plt.plot(xth2, yth2, 'r')
            lib_pts = spl.get_ctrl_pts(only_free=True)
            old = plt.scatter(lib_pts[nth, 0], lib_pts[nth, 1], s=40, color='y')
            lib_pts[nth] = [110, 250]
            new = plt.scatter(lib_pts[nth, 0], lib_pts[nth, 1], s=40, color='r')
            spl.set_ctrl_pts(lib_pts, only_free=True)
            [xth_a1, yth_a1] = np.transpose(spl(np.linspace(ust1, ued1, nb_dct_1)))
            [xth_a2, yth_a2] = np.transpose(spl(np.linspace(ust2, ued2, nb_dct_2)))
            plt.plot(xth_a1, yth_a1, 'g')
            plt.plot(xth_a2, yth_a2, 'g')
            plt.scatter(spl(ust2)[0], spl(ust2)[1], s=40, color='c',
                        marker="*")
            plt.scatter(spl(ued1)[0], spl(ued1)[1], s=40, color='m',
                        marker="*")
        else:
            ust = knots[nth]
            ued = knots[nth + deg + 1]
            nb_dct = (ued - ust) * nb_dct_total
            [xth, yth] = np.transpose(spl(np.linspace(ust, ued, nb_dct)))
            plt.plot(xth, yth, 'r')
            lib_pts = spl.get_ctrl_pts(only_free=True)
            old = plt.scatter(lib_pts[nth, 0], lib_pts[nth, 1], s=40, color='y')
            lib_pts[nth] = [110, 250]
            new = plt.scatter(lib_pts[nth, 0], lib_pts[nth, 1], s=40, color='r')
            spl.set_ctrl_pts(lib_pts, only_free=True)
            [xth_a, yth_a] = np.transpose(spl(np.linspace(ust, ued, nb_dct)))
            plt.plot(xth_a, yth_a, 'g')
            plt.scatter(spl(ust)[0], spl(ust)[1], s=70, color='c',
                        marker="*")
            plt.scatter(spl(ued)[0], spl(ued)[1], s=70, color='m', marker="*")
        plt.legend((all, old, new), ('All control point',
                                     'Old moving point',
                                     'New moving point'))
        plt.savefig(r'\\bkshiva\LCshareNFS002\500.14-Litho\CLG\projects\2017\MB-METRO\MS-1703-ACTIVE_CONTOURS\Figure\MovingControlPoint.png')
        plt.show()
        exit = raw_input('Quitter ou pas ?: ')
        if exit == 'y' or exit == 'Y':
            go_on = False
Ejemplo n.º 34
0
 def _get_tck( self ):
     t = sort(self.points.keys())
     xp = array([self.points[i] for i in t]).T
     k = min(3, len(self.points)-1)
     tcku = splprep(xp, u=t, s=0, k=k)
     return tcku[0]
Ejemplo n.º 35
0
def boomerang(theta=pi/4):#out[0] ed out[1] sono rispettivamente ascisse e ordinate della mia curva
 x=[cos(theta),0,-cos(theta),0,cos(theta)]
 y=[sin(theta)-1.,1/sin(theta)-1,sin(theta)-1.,0,sin(theta)-1.]
 tck, u = scint.splprep([x, y],s=0,per=1)
 tnew = np.arange(0, 1.01, 0.01)
 out = scint.splev(tnew,tck)
 d1 = scint.splev(tnew,tck,der=1)
 d2 = scint.splev(tnew,tck,der=2)
 '''figure()
 plot(x, y, 'x', out[0], out[1], a*np.sin(2*np.pi*unew), b*np.cos(2*np.pi*unew), x, y, 'b')
 legend(['Linear', 'Cubic Spline', 'True'])
 axis([min(out[0])-0.5,max(out[0])+0.5,min(out[1])-0.5,max(out[1])+0.5 ])
 title('Spline of parametrically-defined curve')
 '''
      
 plot(out[0],out[1],x,y)
 #plot(tnew,k,tnew,a*b/(((a**2-b**2)*sin(2*pi*tnew)**2+b**2)**1.5))
 legend(['spline', 'teorica'])
 figure(2)  
 sign=input("press 1 if inside, -1 if outside")
 title("curvatura vs t")
 k = sign * curv(d1[0],d1[1],d2[0],d2[1])
 plot(tnew,k)
 somma=[[],[]]
 normal=[[],[]]
 tangenzial=[[],[]]
 figure(1)
 modulo=sqrt(d1[0]**2+d1[1]**2)
 dt=diff(tnew)[0]
 arc_lenght=sum(modulo*dt)
 superficie=area(out[0],out[1])
 D=.1
 tau=.5
 for i in arange (0,len(out[0])):  
 	#s=sqrt(out[0][i]**2+out[1][i]**2)
	tangenzial[0]=d1[0][i]/modulo[i]
	tangenzial[1]=d1[1][i]/modulo[i]
	normal[0]=np.array(normal[0])
	normal[1]=np.array(normal[1])
	normal[0]=sign*d1[1]/modulo
	normal[1]=-sign*d1[0]/modulo
	somma[0]=modulo*dt*normal[0]*D*abs(sqrt(D*tau)*k+1)
	somma[1]=modulo*dt*normal[1]*D*abs(sqrt(D*tau)*k+1)
	
 #return somma

 quiver(out[0],out[1],normal[0],normal[1])
 print("arc lenght="+str(arc_lenght)+" area= "+str(superficie))
 
 np.save("curvatura",k)
 kmin = k.min()
 kmax = k.max()
 figure(3)
 
 
 normalizzazione= superficie + sqrt(D*tau)*(abs(arc_lenght+sqrt(D*tau)*sum(k*modulo)*dt))
 print("UCNA theoretical results: \n normalization= "+str(normalizzazione))
 print("F_x risultante"+str(sum(somma[0])/normalizzazione)+"  F_y risultante"+str(sum(somma[1])/normalizzazione))
 particle_on_boundary=(normalizzazione-superficie)/normalizzazione
 print("  frazione di particelle sul bordo = "+str(particle_on_boundary))
 avg_module=abs(sum(modulo*dt*D*abs(sqrt(D*tau)*k+1)))/normalizzazione
 print(" average of the force module(respect to all particle) = "+str(avg_module))
 cond_avg_module=abs(sum(modulo*dt*D*abs(sqrt(D*tau)*k+1)))/(normalizzazione-superficie)
 print(" conditional average of the force module(respect to boundary) = "+str(cond_avg_module))
 
 for i in arange(0,len(out[0])-1):
        myk = (k[i]+k[i+1])/2.
        myi = (myk-kmin)/(kmax-kmin)
        myc = (myi,0,1.-myi)
        myc = cm.jet(myi)
	#myc = cm.seismic(myi)
        plot(out[0][i:i+2],out[1][i:i+2],'-',lw=7,color=myc)
 xmx = 1.1*max(out[0])
 ymx = 1.1*max(out[1])
 #plot(out[0],out[1],"-o")
 savetxt("input.dat",transpose(array([out[0][:-1],out[1][:-1]])).astype(float32))
 xlim(-xmx,xmx)
 ylim(-ymx,ymx)
 ax = gca()
 ax.set_aspect(1)
 figure(4)
 title("x(t),y(t)")
 plot(tnew,out[0],"-o") 
 plot(tnew,out[1],"-o")
Ejemplo n.º 36
0
     corners_gt = reader_gt.__next__()
     corners_dwt = reader_dwt.__next__()
     bb = reader_bb.__next__()
 except:
     print('Buildings loaded: ' + str(i) + ', total: ' +
           str(total_count),
           flush=True)
     break
 # Get GT polygons
 num_points = np.int32(corners_gt[0])
 poly = np.zeros([num_points, 2])
 for c in range(num_points):
     poly[c, 0] = np.float(corners_gt[1 + 2 * c]) * out_size / im_size
     poly[c, 1] = np.float(corners_gt[2 + 2 * c]) * out_size / im_size
 [tck, u] = interpolate.splprep([poly[:, 0], poly[:, 1]],
                                s=2,
                                k=1,
                                per=1)
 [allGT[:, 0, total_count],
  allGT[:, 1, total_count]] = interpolate.splev(np.linspace(0, 1, L),
                                                tck)
 # Get DWT polygons
 num_points = np.int32(corners_dwt[0])
 poly = np.zeros([num_points, 2])
 for c in range(num_points):
     poly[c, 0] = np.float(corners_dwt[1 + 2 * c]) * out_size / im_size
     poly[c, 1] = np.float(corners_dwt[2 + 2 * c]) * out_size / im_size
 [tck, u] = interpolate.splprep([poly[:, 0], poly[:, 1]],
                                s=2,
                                k=1,
                                per=1)
 [allDWT[:, 0, total_count],
Ejemplo n.º 37
0
def fit(filename, display=True):
    "Do fitting on midpoints data in filename"
    midpoints = load_midpoints(filename)
    splines = []
    curvatures = []
    norms = []
    maxcurvs = []
    meancurvs = []

    if display:
        fig = plt.figure(figsize=(10, 10))

    for iframe in tqdm(range(3100, len(midpoints))):

        line = midpoints[iframe]

        x = line[:, 0]
        y = line[:, 1]

        # Delete the duplicates
        okay = np.where(np.abs(np.diff(x)) + np.abs(np.diff(y)) > 0)
        x = x[okay]
        y = y[okay]

        # Fit the splines
        tck, u = interpolate.splprep([x, y])
        xnew, ynew = interpolate.splev(np.linspace(0, 1, 200), tck)
        # xnew, ynew = interpolate.splev(np.linspace(0, 1, 100), tck)
        splines.append([xnew, ynew])

        # Calculate the curvatures and norms
        ka, no = curvatures_of_line(xnew, ynew)
        curvatures.append(ka)
        norms.append(no)

        maxcur = np.max(np.abs(ka))
        meancur = np.mean(np.abs(ka))

        maxcurvs.append(maxcur)
        meancurvs.append(meancur)

        # Plot
        if display:
            plt.clf()
            plt.plot(x, y, 'r.')
            plt.plot(xnew, ynew, 'b')
            gap = 2
            plt.quiver(xnew[1:len(xnew) - 2:gap],
                       ynew[1:len(ynew) - 2:gap], (ka * no[:, 0])[::gap],
                       (ka * no[:, 1])[::gap],
                       width=0.002,
                       headwidth=3,
                       headlength=5,
                       scale=1.5)
            plt.text(280,
                     380,
                     "Max Abs. Curv. = " + str(round(maxcur, 4)),
                     color='k',
                     fontsize=10)
            plt.text(280,
                     360,
                     "Avg Abs. Curv. = " + str(round(meancur, 4)),
                     color='k',
                     fontsize=10)
            plt.xlim([0, 600])
            plt.ylim([0, 600])
            # plt.xlim([-3, 3])
            # plt.ylim([-3, 3])
            # plt.savefig('./results/'+ 'Control-EGCaMP_exp1_a1_30x10fps' +'/frames/img' + str(iframe) + '.jpg', dpi=200) # , orientation='landscape')
            plt.pause(0.00001)
            input()

    # Return results
    return (np.array(maxcurvs), np.array(meancurvs))
Ejemplo n.º 38
0
Archivo: pdb0.py Proyecto: ekraka/EDHB
def cartoon(point, li0, d, n = 2):
    #print self.get_backbone()
    if d[point][3] != 'backbone':
        return None 
    
    ind = li0.index(point)
    fli = []

    count = 0
    c1, c2 = 0, 0
    while len(fli) < n+1:
        if d[li0[ind+count]][2] == 'C':
            fli.append(li0[ind+count])
        count += 1
        if ind+count >= len(li0): 
            break
    c1 = count

    count = 1
    while len(fli) < 2*n+1:
        d[li0[ind-count]][2]
        if d[li0[ind-count]][2] == 'C':
            fli.append(li0[ind-count])
        count+=1
        if ind-count <= 0:
            c2 = 2*n+1 - len(fli)
            break

    if c2:
        count = c1
        while len(fli) < 2*n+1:
            #print ind+count, len(fli)
            #print li0[ind+count]
            if d[li0[ind+count]][2] == 'C':
                fli.append(li0[ind+count])
            count += 1
            if ind+count >= len(li0):
                break




    fli.sort()
    #print fli
    coord = [list(map(float,d[i][-3:])) for i in fli]
    coord = np.array(coord)
    x,y,z = coord[:,0],coord[:,1],coord[:,2]
    try:
        tck, u = interpolate.splprep([x,y,z], s=3)
    except ValueError:
        return None
    x_knots, y_knots, z_knots = interpolate.splev(tck[0], tck)
    u_fine = np.linspace(0,1,len(coord)*10)

    x_fine, y_fine, z_fine = interpolate.splev(u_fine, tck)

    coord_fine = []

    for i in range (len(x_fine)):
        coord_fine.append([x_fine[i],y_fine[i],z_fine[i]])

    coord_fine = np.array(coord_fine)

    '''
    fig2 = plt.figure(2)
    ax3d = fig2.add_subplot(111, projection='3d')
    ax3d.plot(x, y, z, 'r*')
    #ax3d.plot(x_knots, y_knots, z_knots, 'go')
    ax3d.plot(x_fine, y_fine, z_fine, 'g-')

    fig2.show()
    plt.show()
    '''

    #print fli
    #self.check_cartoon(fli)

    dis = 0
    for i in range (1,len(coord_fine)-1):
        #print self.d[fli[i]][-3:],self.d[fli[i-1]][-3:]
        dis += distance(coord_fine[i],coord_fine[i-1])

    #print dis, distance(d[fli[0]][-3:], d[fli[-1]][-3:])

    res = dis/distance(d[fli[0]][-3:], d[fli[-1]][-3:])

    return res
Ejemplo n.º 39
0
    def build_profile(self, pts_mask = None, samp_int=3, bins = None, shift = True, wrap = False, cut = True, cutdist=None):
        """
        Build the filament profile using the inputted or recently created filament spine

        Parameters
        ----------
        self: An instance of the radfil_class

        pts_mask: numpy.ndarray
            A 2D array masking out any regions from image array you don't want to sample; must be of boolean
            type and the same shape as the image array. The spine points within the masked out region will then be
            excluded from the list of cuts and the master profile. 

        samp_int: integer (default=3)
            An integer indicating how frequently you'd like to make sample cuts
            across the filament. Very roughly corresponds to sampling frequency in pixels

        bins: int or 1D numpy.ndarray, optional
            The number of bins (int) or the actual bin edges (numpy array) you'd like to divide the profile into. 
            If entered as an integer "n", the profile will be divided into n bins, from the minimum radial distance
            found in any cut to the maximum radial distance found in any cut. If an array (i.e. np.linspace(-2,2,100)). 
            the array values will represent the bin edges (i.e. 100 bins evenly distributed between -2 and 2).
            If entered, the profile will be averaged in each bin, and the fit_profile method will only consider the bin-averaged data

        shift: boolean (default = True)
            Indicates whether to shift the profile to center at the peak value. The peak value is determined
            by searching for the peak value along each cut, either confined within the filament mask,
            or confined within some value cutdist from the spine (if no mask is entered)

        wrap: boolean (default = False)
            Indicates whether to wrap around the central pixel, so that the final profile
            will be a "half profile" with the peak near/at the center (depending on
            whether it's shifted).

        make_cut: boolean (default = True)
            Indicates whether to perform cuts when extracting the profile. Since
            the original spine found by `fil_finder_2D` is not likely differentiable
            everywhere, setting `cut = True` necessitates a spline fit to smoothe
            the spine. Setting `cut = False` will make `radfil` calculate a distance and a
            height/value for every pixel inside the mask.

        cutdist: float or int
            If using a pre-computed spine, and you would like to shift to the peak column density value (shift=True),
            you must enter a cutdist, which indicates the radial distance from the spine you'd like to search for the
            peak column density along each cut. This will create a mask whose outer boundary is
            defined by all points equidistant from the spine at the value of cutdist.


        Attributes
        ----------

        xall, yall: 1D numpy.ndarray (list-like)
            All data points (with or without cutting).

        xbeforespline, ybeforespline: 1D numpy.ndarray (list-like)
            Positions of the "filament" identified by `fil_finder_2D`, in pixel
            units.  This is before smoothing done with `spline`.

        xspline, yspline: 1D numpy.ndarray (list-like)
            Positions of the spline points used for cuts, in pixel units.

        masterx, mastery: 1D numpy.ndarray (list-like)
            The profile (radial distances and height/column density/intensity)
            obtained by `profile_builder`.

        dictionary_cuts: Python dictionary
            A dictionary containing the profile (radian distances and height)
            for each cut along the spline, as two lists--one for the distance,
            and the other for the height.
        """


        # Read shift, wrap, cut, and samp_int
        ## shift
        if isinstance(shift, bool):
            self.shift = shift
        else:
            raise TypeError("shift has to be a boolean value. See documentation.")
        ## wrap
        if isinstance(wrap, bool):
            self.wrap = wrap
        else:
            raise TypeError("wrap has to be a boolean value. See documentation.")
        ## cut
        if isinstance(cut, bool):
            self.cutting = cut
        else:
            raise TypeError("cut has to be a boolean value. See documentation.")
        ## samp_int
        if isinstance(samp_int, int):
            self.samp_int = samp_int
        else:
            self.samp_int = None
            warnings.warn("samp_int has to be an integer; ignored for now. See documentation.")

        # Read the pts_mask
        if isinstance(pts_mask, np.ndarray) and (pts_mask.ndim == 2):
            self.pts_mask = pts_mask.astype(bool)
        else:
            self.pts_mask = None

        #extract x and y coordinates of filament spine
        pixcrd = np.where(self.filspine)

        # Sort these points by distance along the spine
        x, y = profile_tools.curveorder(pixcrd[1], pixcrd[0])
        self.xbeforespline, self.ybeforespline = x, y

        # If cut
        if self.cutting:
            # Filter out wrong samp_int
            if self.samp_int is None:
                raise TypeError("samp_int has to be an integer, when cut is True.")
            # Spline calculation:
            ##set the spline parameters
            k = 3
            nest = -1 # estimate of number of knots needed (-1 = maximal)
            ## find the knot points
            tckp, up, = splprep([x,y], k = k, nest = -1)
            ## evaluate spline
            xspline, yspline = splev(up, tckp)
            xprime, yprime = splev(up, tckp, der=1)
            ## Notice that the result containt points on the spline that are not
            ## evenly sampled.  This might introduce biases when using a single
            ## number `samp_int`.

            #Make sure no-mask case works. If they want to shift and have no mask, need to enter cutdist; otherwise raise warning
            #If everything checks out, create the new mask for them using their inputted cutdist
            if shift is True and self.mask is None:
                if isinstance(cutdist, numbers.Number):
                    try:
                        from descartes import PolygonPatch

                    except ImportError:
                        raise ImportError("You must install the descartes package to continue")

                    self.cutdist = float(cutdist) * self.imgscale.unit

                    spine=LineString([(i[0], i[1]) for i in zip(xspline,yspline)])

                    boundary = spine.buffer(self.cutdist.value/self.imgscale.value)
                    boundarypatch=PolygonPatch(boundary)

                    boundaryline=boundarypatch.get_verts() #green boundary of MST filament

                    # calculate the x and y points possibly within the image
                    y_int = np.arange(0, self.image.shape[0])
                    x_int = np.arange(0, self.image.shape[1])

                    # create a list of possible coordinates (inspired by https://stackoverflow.com/questions/25145931/extract-coordinates-enclosed-by-a-matplotlib-patch)
                    g = np.meshgrid(x_int, y_int)
                    coords = list(zip(*(c.flat for c in g)))

                    # create the list of valid coordinates inside contours
                    newmaskpoints = np.vstack([p for p in coords if boundarypatch.contains_point(p, radius=0)])

                    self.mask=np.zeros(self.image.shape)
                    self.mask[newmaskpoints[:,1],newmaskpoints[:,0]]=1
                    self.mask=self.mask.astype(bool)

                else:
                    raise TypeError("If shift=True and no mask is provided, you need to enter a valid cutdist in pc, which indicates \
                                the radial distance from the spine along which to search for the peak column density pixel")


            ## Plot the results ##########
            ## prepare
            vmin, vmax = np.min(self.image[self.mask]), np.nanpercentile(self.image[self.mask], 98.)
            xmin, xmax = np.where(self.mask)[1].min(), np.where(self.mask)[1].max()
            ymin, ymax = np.where(self.mask)[0].min(), np.where(self.mask)[0].max()
            ## plot
            fig=plt.figure(figsize=(10,5))
            ax=plt.gca()
            ax.imshow(self.image,
                      origin='lower',
                      cmap='gray',
                      interpolation='none',
                      norm = colors.LogNorm(vmin = vmin, vmax =  vmax))
            ax.contourf(self.mask,
                        levels = [0., .5],
                        colors = 'w')
            ax.plot(xspline, yspline, 'r', label='fit', lw=3, alpha=1.0)
            ax.set_xlim(max(0., xmin-.1*(xmax-xmin)), min(self.mask.shape[1]-.5, xmax+.1*(xmax-xmin)))
            ax.set_ylim(max(0., ymin-.1*(ymax-ymin)), min(self.mask.shape[0]-.5, ymax+.1*(ymax-ymin)))
            ax.set_xticklabels([])
            ax.set_yticklabels([])

            self.fig, self.ax = fig, ax

            # Only points within pts_mask AND the original mask are used.
            if (self.pts_mask is not None):
                pts_mask = ((self.pts_mask[np.round(yspline[1:-1:self.samp_int]).astype(int),
                                           np.round(xspline[1:-1:self.samp_int]).astype(int)]) &\
                            (self.mask[np.round(yspline[1:-1:self.samp_int]).astype(int),
                                       np.round(xspline[1:-1:self.samp_int]).astype(int)]))
            else:
                pts_mask = (self.mask[np.round(yspline[1:-1:self.samp_int]).astype(int),
                                      np.round(xspline[1:-1:self.samp_int]).astype(int)])

            # Prepare for extracting the profiles
            self.xspline = xspline[1:-1:self.samp_int][pts_mask]
            self.yspline = yspline[1:-1:self.samp_int][pts_mask]
            self.points = np.asarray(zip(self.xspline, self.yspline))
            self.fprime = np.asarray(zip(xprime[1:-1:self.samp_int][pts_mask], yprime[1:-1:self.samp_int][pts_mask]))


            # Extract the profiles
            dictionary_cuts = defaultdict(list)
            if (self.imgscale.unit == u.pc):
                for n in range(len(self.points)):
                    profile = profile_tools.profile_builder(self, self.points[n], self.fprime[n], shift = self.shift, wrap = self.wrap)
                    cut_distance = profile[0]*self.imgscale.to(u.pc).value
                    dictionary_cuts['distance'].append(cut_distance) ## in pc
                    dictionary_cuts['profile'].append(profile[1])
                    dictionary_cuts['plot_peaks'].append(profile[2])
                    dictionary_cuts['plot_cuts'].append(profile[3])
                    dictionary_cuts['mask_width'].append(geometry.LineString(profile[3]).length*self.imgscale.value)

            elif (self.imgscale.unit == u.pix):
                for n in range(len(self.points)):
                    profile = profile_tools.profile_builder(self, self.points[n], self.fprime[n], shift = self.shift, wrap = self.wrap)
                    cut_distance = profile[0]*self.imgscale.to(u.pix).value  ## in pix
                    dictionary_cuts['distance'].append(cut_distance)
                    dictionary_cuts['profile'].append(profile[1])
                    dictionary_cuts['plot_peaks'].append(profile[2])
                    dictionary_cuts['plot_cuts'].append(profile[3])
                    dictionary_cuts['mask_width'].append(geometry.LineString(profile[3]).length)


            # Return the complete set of cuts. Including those outside `cutdist`.
            self.dictionary_cuts = dictionary_cuts
            ## Plot the peak positions if shift
            if self.shift:
                self.ax.plot(np.asarray(dictionary_cuts['plot_peaks'])[:, 0],
                             np.asarray(dictionary_cuts['plot_peaks'])[:, 1],
                             'b.', markersize = 10.,alpha=0.75)
        # if no cutting
        else:
            warnings.warn("The profile builder when cut=False is currently under development, and may fail with large images. Use at your own risk!!!")

            ## warnings.warn if samp_int exists.
            if (self.samp_int is not None):
                self.samp_int = None
                warnings.warn("samp_int is not used. cut is False.")
            ## warnings.warn if shift and/or wrap is True.
            if (self.shift or (not self.wrap)):
                warnings.warn("shift and/or wrap are not used. cut is False.")
                self.shift, self.wrap = False, True

            # Only points within pts_mask AND the original mask are used.
            if (self.pts_mask is not None):
                pts_mask = ((self.pts_mask[np.round(self.ybeforespline).astype(int),
                                           np.round(self.xbeforespline).astype(int)]) &\
                            (self.mask[np.round(self.ybeforespline).astype(int),
                                       np.round(self.xbeforespline).astype(int)]))
            else:
                pts_mask = (self.mask[np.round(self.ybeforespline).astype(int),
                                      np.round(self.xbeforespline).astype(int)])

            # Make the line object with Shapely
            self.points = np.asarray(zip(self.xbeforespline[pts_mask], self.ybeforespline[pts_mask]))
            line = geometry.LineString(self.points)
            self.xspline, self.yspline, self.fprime = None, None, None

            # Make the mask to use for cutdist selection
            ## (masking out the pixels that are closest to the head or the tail)
            xspine, yspine = self.xbeforespline, self.ybeforespline
            xgrid, ygrid = np.meshgrid(np.arange(self.filspine.shape[1]), np.arange(self.filspine.shape[0]))
            agrid = np.argmin(np.array([np.hypot(xgrid-xspine[i], ygrid-yspine[i]) for i in range(len(xspine))]),
                              axis = 0)
            mask_agrid = (agrid != agrid.max()) & (agrid != 0)

            ## Plot the results #####
            ## prepare
            vmin, vmax = np.min(self.image[self.mask]), np.nanpercentile(self.image[self.mask], 98.)
            xmin, xmax = np.where(self.mask)[1].min(), np.where(self.mask)[1].max()
            ymin, ymax = np.where(self.mask)[0].min(), np.where(self.mask)[0].max()
            ## plot
            fig=plt.figure(figsize=(10, 5))
            ax=plt.gca()
            ax.imshow(self.image,
                      origin='lower',
                      cmap='gray',
                      interpolation='none',
                      norm = colors.LogNorm(vmin = vmin, vmax =  vmax))
            ax.contourf(self.mask,
                        levels = [0., .5],
                        colors = 'w')
            ax.plot(line.xy[0], line.xy[1], 'r', label='fit', lw=2, alpha=0.25)
            ax.set_xlim(max(0., xmin-.1*(xmax-xmin)), min(self.mask.shape[1]-.5, xmax+.1*(xmax-xmin)))
            ax.set_ylim(max(0., ymin-.1*(ymax-ymin)), min(self.mask.shape[0]-.5, ymax+.1*(ymax-ymin)))
            ax.set_xticklabels([])
            ax.set_yticklabels([])
            self.fig, self.ax = fig, ax

            # Extract the distances and the heights
            dictionary_cuts = {}
            if (self.imgscale.unit == u.pc):
                dictionary_cuts['distance'] = [[line.distance(geometry.Point(coord))*self.imgscale.to(u.pc).value for coord in zip(np.where(mask_agrid)[1], np.where(mask_agrid)[0])]]
                dictionary_cuts['profile'] = [[self.image[coord[1], coord[0]] for coord in zip(np.where(mask_agrid)[1], np.where(mask_agrid)[0])]]
                dictionary_cuts['plot_peaks'] = None
                dictionary_cuts['plot_cuts'] = None

            elif (self.imgscale.unit == u.pix):
                dictionary_cuts['distance'] = [[line.distance(geometry.Point(coord))*self.imgscale.to(u.pix).value for coord in zip(np.where(mask_agrid)[1], np.where(mask_agrid)[0])]]
                dictionary_cuts['profile'] = [[self.image[coord[1], coord[0]] for coord in zip(np.where(mask_agrid)[1], np.where(mask_agrid)[0])]]
                dictionary_cuts['plot_peaks'] = None
                dictionary_cuts['plot_cuts'] = None

            self.dictionary_cuts = dictionary_cuts


        xall, yall = np.concatenate(self.dictionary_cuts['distance']),\
                     np.concatenate(self.dictionary_cuts['profile'])

        ## Store the values.
        self.xall = xall ## in pc
        self.yall = yall

        ### the following operations, including binning and fitting, should be done on self.xall and self.yall.
        # Bin the profiles (if nobins=False) or stack the profiles (if nobins=True)
        ## This step assumes linear binning.
        ## If the input is the number of bins:
        if isinstance(bins, numbers.Number) and (bins%1 == 0):
            self.binning = True
            bins = int(round(bins))
            minR, maxR = np.min(self.xall), np.max(self.xall)
            bins = np.linspace(minR, maxR, bins+1)
            masterx = bins[:-1]+.5*np.diff(bins)
            mastery = np.asarray([np.nanmedian(self.yall[((self.xall >= (X-.5*np.diff(bins)[0]))&\
                                  (self.xall < (X+.5*np.diff(bins)[0])))]) for X in masterx])

            # record the number of samples in each bin
            masternobs = np.asarray([np.sum(((self.xall >= (X-.5*np.diff(bins)[0]))&\
                                  (self.xall < (X+.5*np.diff(bins)[0])))) for X in masterx])

            self.bins = bins
        ## If the input is the edges of bins:
        elif isinstance(bins, np.ndarray) and (bins.ndim == 1):
            self.binning = True
            bins = bins
            masterx = bins[:-1]+.5*np.diff(bins) ## assumes linear binning.
            mastery = np.asarray([np.nanmedian(self.yall[((self.xall >= (X-.5*np.diff(bins)[0]))&\
                                  (self.xall < (X+.5*np.diff(bins)[0])))]) for X in masterx])

            # record the number of samples in each bin
            masternobs = np.asarray([np.sum(((self.xall >= (X-.5*np.diff(bins)[0]))&\
                                  (self.xall < (X+.5*np.diff(bins)[0])))) for X in masterx])

            self.bins = bins
        ## If the input is not bins-like.
        else:
            self.binning = False
            self.bins = None
            masterx = self.xall
            mastery = self.yall
            masternobs = None
            print "No binning is applied."

        # Return the profile sent to `fit_profile`.
        self.masterx = masterx
        self.mastery = mastery
        self.masternobs = masternobs

        # Return a dictionary to store the key setup Parameters
        self._params['__init__']['image'] = self.image
        self._params['__init__']['mask'] = self.mask ## This is the intersection between all the masks
        params = {'cutting': self.cutting,
                  'binning': self.binning,
                  'shift': self.shift,
                  'wrap': self.wrap,
                  'bins': self.bins,
                  'samp_int': self.samp_int}
        self._params['build_profile'] = params

        # Return a dictionary to store the results
        ## "points" are the spline points used for the cuts or
        ## the point collection of the original spine in the
        ## "no-cutting" case.
        ## "dictionary_cuts" are for plotting, mainly.
        results = {'points': self.points,
                   'xall': self.xall,
                   'yall': self.yall,
                   'masterx': self.masterx,
                   'mastery': self.mastery,
                   'dictionary_cuts': self.dictionary_cuts}
        self._results['build_profile'] = results

        return self
    def __init__(self, r, k=3, s=None, u=None, force=None):
        """
        Interpolate vector r's path in N-dimensional space (from M points {r}).

        r=array([[vec1], [vec2], [vec3], ..., [vecM]])
        (r[:,i] is the trajectory of component i.)

        k = order of the spline (cubic (3) by default to get curvature)
        s = smoothing parameter ala scipy (s=0 -> points r given exactly)
        u = node points (for internal u-parameter)
        force = force field at the nodes of r (forces evaluated at each M point)

        Usage:
            fr=VectorSplineFunction(r) (now r=fr(t) with t [0,1])
            tan=fr.normalized_tangent(0.2)
            ...


        The trajectory is parametrized with variable 't' ([0,1]) where
        t=l/L (L is the total length of the trajectory and l length so far).
        Internally for technical reasons the path is internally parametrized
        by 'u' ([0,1]), where the path is taken to be _linear_ between
        the points. Thus, for k=1, u is equal to t.

        r=r(t) and r=r(u); r(t=0)=r(u=0) and r(t=1)=r(u=1)
        The length along the path l(u) and l(t). t has the property
        dl(t)/dr=L/1=L = constant (l(t=0)=0 and l(t=1)=L).

        dl   dl(t) dt   dt         l'(u)
        -- = -----*--=L*--  --> dt=-----du --> t(u)=l(u)/L (with correct bound.cond.)
        du    dt   du   du           L

                 /b       /b
        l(a,b)= |   ds = |    |dr(u)/du|du          (for a,b=u)
                /u=a     /u=a

                 /b       /b
        l(a,b)= |   ds = |    |dr(u)/du*du/dt|dt    (for a,b=t)
                /t=a     /t=a

        where |...| is the Eucledian norm.


        Energy slope E'(t)=F(t)*r'(t)

        """
        self.k = k
        self.s = s
        self.r = r.copy()
        self.u = u
        self.N = len(r[0, :])
        self.M = len(r[:, 0])
        self.M2 = self.M * 10  #finer grid  (used for plotting etc)
        self.M3 = self.M * 50  #finest grid (used in integration etc)
        self.w = [1] * self.M
        self.w[0] = 1E6
        self.w[-1] = 1E6

        if self.s == None:
            self.s = self.M - np.sqrt(2.0 * self.M)
        if self.u != None:
            self.u = u.copy()

        self.tck, self.u = splprep(self.r.transpose(),
                                   u=self.u,
                                   k=self.k,
                                   s=self.s,
                                   w=self.w)

        u, l = self.line_integral(a=0, b=1, parameter='u', full_out=True)
        self.length = l[-1]
        t = l / self.length
        self.u_of_t = SplineFunction(t, u, k=3, s=0)
        self.t_of_u = SplineFunction(u, t, k=3, s=0)
        self.t = [self.t_of_u(u) for u in self.u]

        if self.k != 1:
            self.linear = VectorSplineFunction(self.r, k=1, s=0, u=self.u)
        if force != None:
            self.force = VectorSplineFunction(r=force,
                                              k=self.k,
                                              s=self.s,
                                              u=self.u)
Ejemplo n.º 41
0
def spline(points, steps):
    t = np.linspace(0.0, 1.0, steps * 10)
    tck, u = interpolate.splprep(points.T, k=2, s=100.0)
    points = np.stack(interpolate.splev(t, tck, der=0), 1)

    return subsample(points, steps)
Ejemplo n.º 42
0
    def __init__(self, tr_model, arch_proto):
        ShowBase.__init__(self)
        self.taskMgr.add(self.renderNtestTask,
                         "renderNtestTask")  #changing camera poses
        # self.taskMgr.add( self.putAxesTask, "putAxesTask" ) #draw co-ordinate axis

        # Misc Setup
        self.render.setAntialias(AntialiasAttrib.MAuto)
        self.setFrameRateMeter(True)

        self.tcolor = TerminalColors.bcolors()

        #
        # Set up Mesh (including load, position, orient, scale)
        self.setupMesh()
        self.positionMesh()

        # Custom Render
        #   Important Note: self.render displays the low_res and self.scene0 is the images to retrive
        self.scene0 = NodePath("scene0")
        # cytX = copy.deepcopy( cyt )
        self.low_res.reparentTo(self.render)

        self.cyt.reparentTo(self.scene0)
        self.cyt2.reparentTo(self.scene0)

        #
        # Make Buffering Window
        bufferProp = FrameBufferProperties().getDefault()
        props = WindowProperties()
        # props.setSize(1280, 960)
        props.setSize(320, 240)  #@#
        win2 = self.graphicsEngine.makeOutput(
            pipe=self.pipe,
            name='wine1',
            sort=-1,
            fb_prop=bufferProp,
            win_prop=props,
            flags=GraphicsPipe.BFRequireWindow)
        #flags=GraphicsPipe.BFRefuseWindow)
        # self.window = win2#self.win #dr.getWindow()
        self.win2 = win2
        # self.win2.setupCopyTexture()

        # Adopted from : https://www.panda3d.org/forums/viewtopic.php?t=3880
        #
        # Set Multiple Cameras
        self.cameraList = []
        # for i in range(4*4):
        for i in range(1 * 1):  #@#
            print 'Create camera#', i
            self.cameraList.append(self.customCamera(str(i)))

        # Disable default camera
        # dr = self.camNode.getDisplayRegion(0)
        # dr.setActive(0)

        #
        # Set Display Regions (4x4)
        dr_list = self.customDisplayRegion(1, 1)

        #
        # Setup each camera
        for i in range(len(dr_list)):
            dr_list[i].setCamera(self.cameraList[i])

        #
        # Set buffered Queues (to hold rendered images and their positions)
        # each queue element will be an RGB image of size 240x320x3
        self.q_imStack = Queue.Queue()
        self.q_labelStack = Queue.Queue()

        # Caffe
        # Caffe init was here, now removed

        # Setup TensorFLow
        #TODO Get tensorflow model file info from command line (need to edit constructor)
        puf_obj = puf.PlutoFlow(trainable_on_device='/gpu:0')

        # Setup placeholders (need just 1 placeholder, ie. input image)
        #TODO Try `1` instead of `None`
        self.tf_x = tf.placeholder('float', [None, 240, 320, 3], name='x')

        # Set the ResNet inference_op
        with tf.device('/gpu:0'):
            self.tf_infer_op = puf_obj.resnet50_inference(self.tf_x,
                                                          is_training=False)

        # Print all Trainable Variables
        var_list = tf.trainable_variables()
        print '--Trainable Variables--', 'length= ', len(var_list)
        total_n_nums = []
        for vr in var_list:
            shape = vr.get_shape().as_list()
            n_nums = np.prod(shape)
            total_n_nums.append(n_nums)
            print self.tcolor.OKGREEN, vr.name, shape, n_nums, self.tcolor.ENDC

        print self.tcolor.OKGREEN, 'Total Trainable Params (floats): ', sum(
            total_n_nums)
        print 'Not counting the pop_mean and pop_varn as these were set to be non trainable', self.tcolor.ENDC

        # Fire up the TensorFlow-Session
        self.tensorflow_session = tf.Session(config=tf.ConfigProto(
            log_device_placement=True, allow_soft_placement=True))

        # Load trainables' values from file
        self.tensorflow_saver = tf.train.Saver()
        restore_file_name = 'tf.models/model-165000'
        print 'Loading Model File : ', restore_file_name
        self.tensorflow_saver.restore(self.tensorflow_session,
                                      restore_file_name)
        print self.tcolor.OKGREEN, 'Loaded file : ', restore_file_name, self.tcolor.ENDC

        # store loss at each frame in the trajectory
        self.loss_ary = []
        self.gt_ary = []
        self.pred_ary = []

        #
        # Setting up Splines
        # Note: Start interpolation at 50,

        # self.pathGen = PathMaker.PathMaker().path_flat_h
        # self.pathGen = PathMaker.PathMaker().path_smallM
        # self.pathGen = PathMaker.PathMaker().path_yaw_only
        # self.pathGen = PathMaker.PathMaker().path_bigM
        # self.pathGen = PathMaker.PathMaker().path_flat_spiral
        # self.pathGen = PathMaker.PathMaker().path_helix
        # self.pathGen = PathMaker.PathMaker().path_like_real
        self.pathGen = PathMaker.PathMaker().path_like_real2

        t, X = self.pathGen()

        self.spl_tck, self.spl_u = interpolate.splprep(X.T,
                                                       u=t.T,
                                                       s=0.0,
                                                       per=1)
from scipy import interpolate
import matplotlib.pyplot as plt
import numpy as np


def spline(conf, x):
    a, b, c, d = conf
    y = a + b * (x) + c * (x**2) + d * (x**3)
    return y


x = np.array([0, 1, 2, 3, 9, 8, 6, 7, 8, 9])
y = np.array([5, 2, 3, 4, 9, 3, 4, 0, 2, 1])

deg = 5
point = 100
tck, u = interpolate.splprep([x, y], k=deg, s=0)
u = np.linspace(0, 1, num=point, endpoint=True)
spline = interpolate.splev(u, tck)

#-----drawing-----
plt.figure(1)
plt.plot(x, y, "go")
plt.plot(spline[0], spline[1], "r-")

plt.pause(0.02)
plt.show()
Ejemplo n.º 44
0
                     [+9.7652e-02, +1.6437e-02, -3.7717e-02],
                     [+9.9588e-02, +8.7955e-03, -3.7621e-02],
                     [+1.0067e-01, -1.2508e-03, -3.7747e-02],
                     [+1.0001e-01, -9.6434e-03, -3.7707e-02],
                     [+9.7509e-02, -1.8110e-02, -3.7714e-02],
                     [+9.4712e-02, -2.3489e-02, -3.7709e-02],
                     [+9.2555e-02, -2.6809e-02, -3.7705e-02],
                     [+8.8488e-02, -3.0517e-02, -3.7705e-02],
                     [+8.5550e-02, -3.2219e-02, -3.7693e-02],
                     [+8.0712e-02, -3.4272e-02, -3.7685e-02],
                     [+7.3737e-02, -3.6850e-02, -3.7739e-02],
                     [+6.3462e-02, -3.7464e-02, -3.7913e-02],
                     [+5.7212e-02, -3.7632e-02, -3.7902e-02],
                     [+5.0136e-02, -3.7304e-02, -3.7890e-02]])
print leftFoot
tck, u = splprep(leftFoot.T, u=None, s=0.0)
print tck

u_new = np.linspace(u.min(), u.max(), 1000)
x_new, y_new, z_new = splev(u_new, tck, der=0)

writeSpline("left_foot_contour", leftFoot, tck)

# ----------------- Working on rightfoot
rightFoot = leftFoot
rightFoot[:, 1] *= -1

tck, u = splprep(rightFoot.T, u=None, s=0.0)
u_new = np.linspace(u.min(), u.max(), 1000)
x_new, y_new, z_new = splev(u_new, tck, der=0)
Ejemplo n.º 45
0
    def plot_(self):

        self.axes.cla()

        data = []
        knots = []
        knots_uniform = []
        control_point_list = []
        control_point_list_uniform = []
        with open("data.txt", "rt") as file:
            for line in file:
                data.append(list(map(int, line.strip().split(" "))))
        with open("output_from_ui.txt", "rt") as output:
            for idx, line in enumerate(output.readlines()):
                line = line.strip('\n')
                if idx == 0:
                    k = int(line.strip('\n'))
                elif idx == 1:
                    num_cpoints = int(line.strip('\n'))
                elif idx == 3:
                    knot = line.strip('\n').split(' ')
                    knot.pop()
                    knot = list(map(float, knot))
                elif idx >= 5:
                    control_point = line.strip("\n").split(' ')
                    control_point = list(map(float, control_point))
                    control_point_list.append(control_point)

        control_point_list = np.array(control_point_list)
        control_point_x = control_point_list[:, 0]
        control_point_y = control_point_list[:, 1]

        data = np.array(data)
        x = data[:, 0]
        y = data[:, 1]
        tck, u = interpolate.splprep([x, y], s=0, k=3)
        unew = np.arange(0, 1, 0.01)
        u = np.linspace(0, 1, num=100, endpoint=True)
        out = interpolate.splev(u, tck)

        inter_x, inter_y = np.array(
            interpolate.splev(unew, (knot, control_point_list.T, 3)))

        self.axes.set_title(
            'CE7453 Numerical Algorithms B-Spline interpolation', fontsize=15)
        self.axes.set_xlabel('x', horizontalalignment='center', fontsize=15)
        self.axes.set_ylabel('y', horizontalalignment='center', fontsize=15)
        # plt.plot(out[0], out[1], 'y',color='blue',label='Degree 3 Scipy method')
        self.axes.plot(control_point_x,
                       control_point_y,
                       color='red',
                       marker='.',
                       linestyle='--',
                       label='Control Polygon(Chord)',
                       markersize=6)
        self.axes.plot(inter_x,
                       inter_y,
                       linestyle='-',
                       color='green',
                       label='Degree 3 B-Spline Curve(Chord)')
        self.axes.plot(x, y, 'ko', label='Data Points', markersize=4)
        self.axes.legend()
        # ax.tight_layout()
        # plt.savefig('Comparison.png')
        # plt.show()

        self.canvas.draw()
Ejemplo n.º 46
0
def plot_mep(atom_pos,
             mep_energies,
             image_name=None,
             filename=None,
             show=None,
             plot=1,
             fitplot_args=None,
             style_dic=None):
    """
    Used for NEB method
    atom_pos (list) - xcart positions of diffusing atom along the path,
    mep_energies (list) - full energies of the system corresponding to atom_pos

    image_name - deprecated, use filename
    style_dic - dictionary with styles
        'p' - style of points
        'l' - style of labels
        'label' - label of points

    plot - if plot or not

    """

    from analysis import determine_barrier

    if filename is None:
        filename = image_name

    #Create
    if not style_dic:
        style_dic = {'p': 'ro', 'l': 'b-', 'label': None}

    if not fitplot_args:
        fitplot_args = {}

    # print

    atom_pos = np.array(atom_pos)
    data = atom_pos.T  #
    tck, u = interpolate.splprep(
        data)  #now we get all the knots and info about the interpolated spline
    path = interpolate.splev(
        np.linspace(0, 1, 500), tck
    )  #increase the resolution by increasing the spacing, 500 in this example
    path = np.array(path)

    diffs = np.diff(path.T, axis=0)
    path_length = np.linalg.norm(diffs, axis=1).sum()
    mep_pos = np.array([p * path_length for p in u])

    if 0:  #plot the path in 3d
        fig = plt.figure()
        ax = Axes3D(fig)
        ax.plot(data[0],
                data[1],
                data[2],
                label='originalpoints',
                lw=2,
                c='Dodgerblue')
        ax.plot(path[0], path[1], path[2], label='fit', lw=2, c='red')
        ax.legend()
        plt.show()

    # if '_mep' not in calc:
    calc['_mep'] = [
        atom_pos, mep_energies
    ]  # just save in temp list to use the results in neb_wrapper

    if hasattr(header,
               'plot_mep_invert') and header.plot_mep_invert:  # for vacancy
        mep_energies = list(reversed(mep_energies))

    mine = min(mep_energies)
    eners = np.array(mep_energies) - mine

    xnew = np.linspace(0, path_length, 1000)

    # ynew = spline(mep_pos, eners, xnew )
    # spl = CubicSpline(mep_pos, eners, bc_type = 'natural' ) # second-derivative zero
    # spl = CubicSpline(mep_pos, eners,) #
    # spl = CubicSpline(mep_pos, eners, bc_type = 'periodic')
    # spl = CubicSpline(mep_pos, eners, bc_type = 'clamped' ) #first derivative zero

    spl = scipy.interpolate.PchipInterpolator(mep_pos, eners)

    ynew = spl(xnew)

    diff_barrier = determine_barrier(mep_pos, eners)

    print_and_log('plot_mep(): Diffusion barrier =',
                  round(diff_barrier, 2),
                  ' eV',
                  imp='y')
    # sys.exit()
    # print()

    if 'fig_format' not in fitplot_args:
        fitplot_args['fig_format'] = 'eps'

    if 'xlim' not in fitplot_args:
        fitplot_args['xlim'] = (-0.05, None)

    if 'xlabel' not in fitplot_args:
        fitplot_args['xlabel'] = 'Reaction coordinate ($\AA$)'

    if 'ylabel' not in fitplot_args:
        fitplot_args['ylabel'] = 'Energy (eV)'

    path2saved = None
    if plot:
        # print(image_name)
        path2saved = fit_and_plot(orig=(mep_pos, eners, style_dic['p'],
                                        style_dic['label']),
                                  spline=(xnew, ynew, style_dic['l'], None),
                                  image_name=image_name,
                                  filename=filename,
                                  show=show,
                                  **fitplot_args)

        # print(image_name, filename)
        if 0:
            with open(filename + '.txt', 'w') as f:
                f.write('DFT points:\n')
                for m, e in zip(mep_pos, eners):
                    f.write('{:10.5f}, {:10.5f} \n'.format(m, e))
                f.write('Spline:\n')
                for m, e in zip(xnew, ynew):
                    f.write('{:10.5f}, {:10.5f} \n'.format(m, e))

    return path2saved, diff_barrier
def main(argv):
    indexPhaseX0 = 1
    numberOfPhasesForX0 = 40
    i0 = 10
    nSPLUNew = 1000
    vMin = -90
    vMax = 15
    nMin = -0.1
    nMax = 0.8
    integrationFilename = "results/integrationINapIKFig10_1.npz"
    isochronFilename = \
     "results/isochronINapIKFig10_1Phase%02dOver%d.npz"%(indexPhaseX0,
                                                          numberOfPhasesForX0)
    figFilename = \
     "figures/isochronINapIKFig10_1Phase%02dOver%d.eps"%(indexPhaseX0,
                                                          numberOfPhasesForX0)

    results = np.load(integrationFilename)
    times = results["times"]
    ys = results["ys"]
    spikeIndices = getPeakIndices(v=ys[0, :])
    spikeTimes = times[spikeIndices]

    times = np.delete(times, np.arange(0, spikeIndices[0]))
    times = times - times[0]
    ys = np.delete(ys, np.arange(0, spikeIndices[0]), axis=1)
    spikeIndices = spikeIndices - spikeIndices[0]
    spikeTimes = spikeTimes - spikeTimes[0]
    period = spikeTimes[1] - spikeTimes[0]
    phases = times % period
    phasesForX0 = np.arange(0, period, period / numberOfPhasesForX0)
    indicesBtwFirstAndSecondSpike = np.arange(0, spikeIndices[1])
    phasesToSearch = phases[indicesBtwFirstAndSecondSpike]

    indicesPhasesForX0 = np.empty(len(phasesForX0), dtype=np.int64)
    for i in xrange(len(phasesForX0)):
        phaseForX0 = phasesForX0[i]
        indicesPhasesForX0[i] = np.argmin(np.abs(phasesToSearch - phaseForX0))
    x0 = ys[:, indicesPhasesForX0[indexPhaseX0]]

    results = np.load(isochronFilename)
    isochron = results["isochron"]

    validIndices = np.logical_and(
        np.logical_and(vMin <= isochron[0, :], isochron[0, :] <= vMax),
        np.logical_and(nMin <= isochron[1, :],
                       isochron[1, :] <= nMax)).nonzero()[0]
    isochron = isochron[:, validIndices]

    sortedIsochron = sortIsochron(isochron=isochron)

    splTck, splU = splprep(sortedIsochron, s=5.0)
    splUNew = np.linspace(splU.min(), splU.max(), nSPLUNew)
    splXInter, splYInter = splev(splUNew, splTck, der=0)

    # plt.figure()
    # plotHighThresholdINapIKVectorField(i=i0)
    plt.plot(ys[0, :], ys[1, :], label="limit cycle attractor")
    # pdb.set_trace()

    plt.annotate("x0", xy=x0, color="red", size=14)

    def i(t):
        return (i0)

    model = INapIKModel.getHighThresholdInstance(i=i)
    plotINapIKNullclines(i=i0,
                         eL=model._eL,
                         gL=model._gL,
                         eNa=model._eNa,
                         gNa=model._gNa,
                         eK=model._eK,
                         gK=model._gK,
                         mVOneHalf=model._mVOneHalf,
                         mK=model._mK,
                         nVOneHalf=model._nVOneHalf,
                         nK=model._nK)
    plt.plot(isochron[0, :],
             isochron[1, :],
             marker="o",
             color="red",
             linestyle="None")
    plt.plot(splXInter, splYInter, color="gray", linestyle="solid")
    plt.legend(loc="upper left")
    plt.xlabel("Voltage (mv)")
    plt.ylabel("K activation variable, n")
    plt.xlim((-90, 15))
    plt.ylim((-0.1, 0.8))
    plt.savefig(figFilename)
    plt.show()
    pdb.set_trace()
Ejemplo n.º 48
0
print("luego es", type(axx))
'''
LO IDEAL

axx = [[253, 212], [338, 247], [242, 347], [226, 417], [247, 513], 
    [245, 552], [260, 640], [209, 725], [366, 809], [311, 905], [232, 958]]
print("primero es",type(axx))
axx = np.asarray(axx)
print("luego es",type(axx))
'''

print(axx)
axx = np.array(axx.T)

tck, u = interpolate.splprep(axx, s=0)
unew = np.arange(0, 1.01, 0.01)
out = interpolate.splev(unew, tck)
print(type(axx))
print(axx)
'''plt.xlim(0, ancho)
plt.ylim(0, altura2)
plt.xlabel('X Axis limit is (0,7)')
plt.ylabel('Y Axis limit is (-0.5,4)')'''
img = plt.imread("ex5.jpg")
fig, ax = plt.subplots()
ax.imshow(img)

#plt.plot(out[0], out[1], color='orange')
plt.plot(axx[0, :], axx[1, :], 'ob')
Ejemplo n.º 49
0
    for j in range(len(d1)):
        for i in range(len(data)):
            if str(data[i]) == str(d1[j]):
                dic.append(i)
                break
    dic.sort()
    dic.append(-1)
    return data[dic]


for fi in range(info[0]):
    dd = d[fi]
    data = dd
    data = uniqueArray(dd)
    ##spline to make curve smooth
    tck, u = splprep([data[:, 0], data[:, 1]], u=None, s=0, per=1)
    unew = np.linspace(u.min(), u.max(), num=2000)
    data = np.array(splev(unew, tck, der=0))
    data = data.transpose()

    data = np.floor(data * 1000 *
                    (900 / 173.0))  ## 173 is the size of image in microview
    data = data.astype(int)

    x, y = np.where(data > (image_XY_size))
    data[x, y] = image_XY_size

    x, y = np.where(data < 0)
    data[x, y] = 0

    onlycontour[fi, image_XY_size - data[:, 1], data[:, 0]] = 255
Ejemplo n.º 50
0
def resample_contour(contour, n=51):
    tck, _ = splprep([contour[0], contour[1], contour[2]], s=0, k=1)
    new_points = splev(np.linspace(0, 1, n), tck)

    return new_points
ax[0].plot(frames,z, label='z')
ax[0].legend()

ax[1].plot(frames, qx, label='qx')
ax[1].plot(frames, qy, label='qy')
ax[1].plot(frames, qz, label='qz')
ax[1].plot(frames, qw, label='qw')
ax[1].legend()
ax[0].grid(True)
ax[1].grid(True)
plt.show()
fig.savefig("trajectories/test-right-arm-motion.png")


# Smoothed
tck, u = interpolate.splprep([frames, x], s=0.02)
#create interpolated lists of points
frameXnew, xnew = interpolate.splev(u,tck)
tck, u = interpolate.splprep([frames, y], s=0.02)
#create interpolated lists of points
frameYnew, ynew = interpolate.splev(u,tck)

tck, u = interpolate.splprep([frames, z], s=0.02)
#create interpolated lists of points
frameZnew, znew = interpolate.splev(u,tck)

tck, u = interpolate.splprep([frames, qx], s=0.02)
#create interpolated lists of points
frameqxnew, qxnew = interpolate.splev(u,tck)

tck, u = interpolate.splprep([frames, qy], s=0.02)
Ejemplo n.º 52
0
print(len(coordinates_list))

# copy the coordinates list and remove x percent of entries
coordinates_list_less = coordinates_list[:]

# sort the lists by timestamps and unzip the triples into three seperate lists
coordinates_list.sort()
coordinates_list = list(zip(*coordinates_list))

timestamp_list = coordinates_list[0]
latitude_list = coordinates_list[1]
longitude_list = coordinates_list[2]

# plt.scatter(longitude_list, latitude_list, color='blue', label='given')
tck, u = interpolate.splprep([longitude_list, latitude_list], s=0.0)
x_i, y_i = interpolate.splev(np.linspace(0, 1, 100), tck)
# plt.plot(x_i, y_i, color='red', label='all points')

# -----------------------------------------------------------------------------

# copy the coordinates list and remove x percent of entries
remove_random_entries(coordinates_list_less, 0.99)
coordinates_list_less.sort()

print(len(coordinates_list_less))

coordinates_list_gap = []
for j in range(len(coordinates_list_less)):
    if not 75 < j < 100:
        coordinates_list_gap.append(coordinates_list_less[j])
Ejemplo n.º 53
0
def xkcd_line(x, y, xlim=None, ylim=None, mag=1.0, f1=30, f2=0.001, f3=5):
    """
    Mimic a hand-drawn line from (x, y) data
    Source: http://jakevdp.github.io/blog/2012/10/07/xkcd-style-plots-in-matplotlib/

    Parameters
    ----------
    x, y : array_like
        arrays to be modified
    xlim, ylim : data range
        the assumed plot range for the modification.  If not specified,
        they will be guessed from the  data
    mag : float
        magnitude of distortions
    f1, f2, f3 : int, float, int
        filtering parameters.  f1 gives the size of the window, f2 gives
        the high-frequency cutoff, f3 gives the size of the filter

    Returns
    -------
    x, y : ndarrays
        The modified lines
    """
    x = np.asarray(x)
    y = np.asarray(y)

    # get limits for rescaling
    if xlim is None:
        xlim = (x.min(), x.max())
    if ylim is None:
        ylim = (y.min(), y.max())

    if xlim[1] == xlim[0]:
        xlim = ylim

    if ylim[1] == ylim[0]:
        ylim = xlim

    # scale the data
    x_scaled = (x - xlim[0]) * 1. / (xlim[1] - xlim[0])
    y_scaled = (y - ylim[0]) * 1. / (ylim[1] - ylim[0])

    # compute the total distance along the path
    dx = x_scaled[1:] - x_scaled[:-1]
    dy = y_scaled[1:] - y_scaled[:-1]
    dist_tot = np.sum(np.sqrt(dx * dx + dy * dy))

    # number of interpolated points is proportional to the distance
    Nu = int(200 * dist_tot)
    u = np.arange(-1, Nu + 1) * 1. / (Nu - 1)

    # interpolate curve at sampled points
    k = min(3, len(x) - 1)
    res = interpolate.splprep([x_scaled, y_scaled], s=0, k=k)
    x_int, y_int = interpolate.splev(u, res[0])

    # we'll perturb perpendicular to the drawn line
    dx = x_int[2:] - x_int[:-2]
    dy = y_int[2:] - y_int[:-2]
    dist = np.sqrt(dx * dx + dy * dy)

    # create a filtered perturbation
    coeffs = mag * np.random.normal(0, 0.01, len(x_int) - 2)
    b = signal.firwin(f1, f2 * dist_tot, window=('kaiser', f3))
    response = signal.lfilter(b, 1, coeffs)

    x_int[1:-1] += response * dy / dist
    y_int[1:-1] += response * dx / dist

    # un-scale data
    x_int = x_int[1:-1] * (xlim[1] - xlim[0]) + xlim[0]
    y_int = y_int[1:-1] * (ylim[1] - ylim[0]) + ylim[0]

    return x_int, y_int
Ejemplo n.º 54
0
def make_plot(fname, seed=None):
    n_quadrants = 8
    out_shape = 256

    # Define the arc (presumably ezdxf uses a similar convention)
    centerx, centery = 0, 0
    radius = 1
    numsegments = 1000
    start_angles = np.linspace(0, 360 * ((n_quadrants - 1) / n_quadrants),
                               n_quadrants)
    inc_angle = 360 / n_quadrants

    polys = []
    for start_angle in start_angles:

        end_angle = start_angle + inc_angle
        # The coordinates of the arc
        theta = np.radians(np.linspace(start_angle, end_angle, numsegments))
        x = centerx + radius * np.cos(theta)
        y = centery + radius * np.sin(theta)

        xy = np.array((x, y))
        center = np.array((centerx, centery))[..., np.newaxis]
        pts = np.concatenate((center, xy), axis=1)
        poly = geom.Polygon([(pts[0, i], pts[1, i])
                             for i in range(pts.shape[1])])
        polys.append(poly)

    fig, ax = plt.subplots(1, 2)

    colors = []
    for poly in polys:
        line = ax[0].plot(*poly.exterior.xy, '--')
        colors.append(line[0].get_color())

    # make random point on each quadrants
    if (seed is not None):
        np.random.seed(seed)

    rho_range = np.linspace(0.2, 1, 100)
    theta_range = np.linspace(0, 1, 100)

    # pts = [(np.random.choice(rho_range), np.random.choice(theta_range))
    #        for _ in range(n_quadrants)]
    pts = [(np.random.choice(rho_range), 0.5) for _ in range(n_quadrants)]

    pts_cart = []
    for p, start_angle, color in zip(pts, start_angles, colors):
        rho = p[0]
        theta = np.radians(start_angle + inc_angle * p[1])
        R = np.array([[np.cos(theta), -np.sin(theta)],
                      [np.sin(theta), np.cos(theta)]])
        x, y = rho, 0
        p = np.array((x, y))[..., np.newaxis]
        p = np.dot(R, p)
        pts_cart.append(p)
        ax[0].plot(p[0], p[1], 'o', color=color)

    # fit splines to x=f(u) and y=g(u), treating both as periodic. also note that s=0
    # is needed in order to force the spline fit to pass through all the input points.
    pts_cart = np.array(pts_cart)[..., 0]
    pts_cart = np.concatenate((pts_cart, pts_cart[0, ...][np.newaxis, ...]),
                              axis=0)
    import pdb
    pdb.set_trace()
    tck, u = interpolate.splprep([pts_cart[:, 0], pts_cart[:, 1]],
                                 s=0,
                                 per=True)

    # evaluate the spline fits for 1000 evenly spaced distance values
    xi, yi = interpolate.splev(np.linspace(0, 1, 1000), tck)
    ax[0].plot(xi, yi, 'k')
    ax[0].set_aspect('equal')
    ax[0].grid()

    # draw full shape
    xi = ((xi + 1) / 2) * out_shape
    yi = -yi
    yi = ((yi + 1) / 2) * out_shape
    rr, cc = draw.polygon(yi, xi, (out_shape, out_shape))
    img = np.zeros((out_shape, out_shape), dtype=bool)
    img[rr, cc] = 1

    ax[1].imshow(img)
    fig.savefig(fname)
Ejemplo n.º 55
0
    def upsample(self,
                 samp_values,
                 file_size,
                 first_samp=0,
                 last_samp=0,
                 interp_tech='pchip'):
        if interp_tech is 'step':
            beg_pad = int((self.noverlap) / 2)
            up_version = np.zeros((file_size))
            up_version[:beg_pad] = first_samp
            up_version[beg_pad:beg_pad+self.frame_jump*self.nframes] = \
                                    np.repeat(samp_values, self.frame_jump)
            up_version[beg_pad + self.frame_jump * self.nframes:] = last_samp

        elif interp_tech is 'pchip' or 'spline':
            if np.amin(samp_values) > 0:
                if interp_tech is 'pchip':
                    up_version = scipy_interp.pchip(
                        self.frames_pos, samp_values)(range(file_size))

                elif interp_tech is 'spline':
                    tck, u_original = scipy_interp.splprep(
                        [self.frames_pos, samp_values], u=self.frames_pos)
                    up_version = scipy_interp.splev(range(file_size), tck)[1]
            else:
                beg_pad = int((self.noverlap) / 2)
                up_version = np.zeros((file_size))
                up_version[:beg_pad] = first_samp
                voiced_frames = np.nonzero(samp_values)[0]
                edges = np.nonzero(
                    (voiced_frames[1:] - voiced_frames[:-1]) > 1)[0]
                edges = np.insert(edges, len(edges), len(voiced_frames) - 1)
                voiced_frames = np.split(voiced_frames, edges + 1)[:-1]

                for frame in voiced_frames:
                    up_interval = self.frames_pos[frame]
                    tot_interval = np.arange(
                        int(up_interval[0] - (self.frame_jump / 2)),
                        int(up_interval[-1] + (self.frame_jump / 2)))

                    if interp_tech is 'pchip' and len(frame) > 2:
                        up_version[tot_interval] = scipy_interp.pchip(
                            up_interval, samp_values[frame])(tot_interval)

                    elif interp_tech is 'spline' and len(frame) > 3:
                        tck, u_original = scipy_interp.splprep(
                            [up_interval, samp_values[frame]], u=up_interval)
                        up_version[tot_interval] = scipy_interp.splev(
                            tot_interval, tck)[1]

                    # MD: In case len(frame)==2, above methods fail.
                    #Use linear interpolation instead.
                    elif len(frame) > 1:
                        up_version[tot_interval] = scipy_interp.interp1d(
                            up_interval,
                            samp_values[frame],
                            fill_value='extrapolate')(tot_interval)

                    elif len(frame) == 1:
                        up_version[tot_interval] = samp_values[frame]

                up_version[beg_pad +
                           self.frame_jump * self.nframes:] = last_samp

        return up_version
Ejemplo n.º 56
0
 def __init__(self, a_Point):
     x = [p[0] for p in a_Point]
     y = [p[1] for p in a_Point]
     z = [p[2] for p in a_Point]
     self.control_polyline = Polyline3D(a_Point)
     self.tck, self.u = interpolate.splprep([x, y, z], s=3)
def interpolatePoints(xs,ys,length):
    '''
    Interpolates points along an x-y (or lat-lon) line into a regulary spaced
    array. Resamples the number of points based on length of line. 
    INPUT:
        xs - [long0,long1,long2....]
        ys - [lat0,lat1,lat2...]
        length - float
    OUTPUT:
        Resampled xs - [newlon0,newlon1....]
        Resampled ys - [newlat0,newlat1....]
        
    TODO:
        
    Warnings:
        Uses a global variable called 'interpolation', which is the size of the
        interpolation in degrees
    '''
    from scipy.interpolate import splprep, splev    
    
    #Resolution of interpolation (in degrees)
    if 'interpolation' in globals():
        interDist=interpolation
    else:
        print 'No global interpolation, setting to 1 degree'
        interDist=1

    #The interpolation does not do well if the interpolation is over the +-180
    #So check if we need to convert it to 0-360
    #If the difference in lon values is very large, I assume interpolation fails
    lonDiff=numpy.diff(xs)
    #Check if each difference is bigger than 180 degrees (arbitrary)
    if any(abs(x) > 180.0 for x in lonDiff):
        tempxs=convert180to360(xs)
    else:
        tempxs=xs

    #Plot the original data set
    #print max(abs(lonDiff))
    #plt.scatter(tempxs,ys,c='b')

    #Interpolate the points
    tckp,u = splprep([tempxs,ys],k=1,s=0)
    u = numpy.arange(0,1,interDist/length)
    [xnew,ynew] = splev(u,tckp)

    
    #Now if it was converted, change it back to -180 to 180
    if any(abs(x) > 180.0 for x in lonDiff):
        tempxnew=convert360to180(xnew)
    else:
        tempxnew=xnew
    
    #Plot the interpolated one
    #plt.scatter(tempxnew,ynew,s=20,c='r',marker='x')
    
    #TODO: if you need to interpolate data also
    #f = interpolate.interp2d(xs, ys, zs, kind='linear')
    #znew = f(xnew, ynew)

    #plt.show()

    return [tempxnew,ynew]
Ejemplo n.º 58
0
def b_spline_python(x, y, z, s=0, k=3, nest=-1):
    """see http://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splprep.html for full input information"""
    from scipy.interpolate import splprep, splev
    tckp, u = splprep([x, y, z], s=s, k=k, nest=nest)
    xnew, ynew, znew = splev(u, tckp)
    return xnew, ynew, znew
Ejemplo n.º 59
0
def load_and_process(path):
    # LOAD MAP
    map_ = (np.load(path) * 255).astype(np.uint8)
    map_visu = np.zeros((map_.shape[0], map_.shape[1], 3), dtype=np.uint8)

    # MOVE TO CORRECT PROJECTION
    map_visu = cv2.rotate(map_visu, cv2.ROTATE_90_COUNTERCLOCKWISE)
    map_ = cv2.rotate(map_, cv2.ROTATE_90_COUNTERCLOCKWISE)
    map_visu = cv2.flip(map_visu, 0)
    map_ = cv2.flip(map_, 0)

    # CREATE KERNEL, AND INFLATE IMAGE (REMOVE HOLES)
    kernel = np.ones((3, 3), np.uint8)
    map_dil_k3_t5 = cv2.dilate(map_, kernel, iterations=5)
    inv_dil_map = ((map_dil_k3_t5 == 0) * 255).astype(np.uint8)

    # REMOVE THE CENTER ISLAND
    blobs = cv2.connectedComponents(inv_dil_map)
    inside = ((blobs[1] == 2) * 255).astype(np.uint8)
    inside_inv = ((inside == 0) * 255).astype(np.uint8)

    # GET THE INSIDE OF THE LAKE
    blobs_inside = cv2.connectedComponents(inside_inv)
    clean_inside = (((blobs_inside[1] == 1) == 0) * 255).astype(np.uint8)

    # COMPUTE CONTOUR (ON INFLATED MAP)
    contours, hierarchy = cv2.findContours(clean_inside, cv2.RETR_TREE,
                                           cv2.CHAIN_APPROX_SIMPLE)
    map_visu = cv2.drawContours(map_visu, contours, 0, (0, 255, 0), 8)
    map_visu[:, :, 0] = map_

    # COMPUTE CONTOUR WITH COMPENSATION FOR INFLATION OFFSET
    fine_contour_map = (map_.copy() * 0).astype(np.uint8)
    fine_contour_map = cv2.drawContours(fine_contour_map, contours, 0, (255),
                                        8)
    fine_contour, fine_h = cv2.findContours(fine_contour_map, cv2.RETR_TREE,
                                            cv2.CHAIN_APPROX_SIMPLE)
    map_visu = cv2.drawContours(map_visu, fine_contour, 0, (0, 0, 255), 1)

    # COMPUTE HARD-SPAWN AREA
    hardspawn_contour_map = (map_.copy() * 0).astype(np.uint8)
    hardspawn_contour_map = cv2.drawContours(hardspawn_contour_map,
                                             fine_contour, 0, (255), 110)
    hardspawn_contour, fine_h = cv2.findContours(hardspawn_contour_map,
                                                 cv2.RETR_TREE,
                                                 cv2.CHAIN_APPROX_SIMPLE)
    map_visu = cv2.drawContours(map_visu, hardspawn_contour, 1, (235, 52, 210),
                                40)

    # COMPUTE PERFECT NAVIGATION DISTANCE
    distance_contour_map = (map_.copy() * 0).astype(np.uint8)
    ditance_contour_map = cv2.drawContours(distance_contour_map, fine_contour,
                                           0, (255), 180)
    distance_contour, fine_h = cv2.findContours(distance_contour_map,
                                                cv2.RETR_TREE,
                                                cv2.CHAIN_APPROX_SIMPLE)
    map_visu = cv2.drawContours(map_visu, distance_contour, 1, (255, 204, 0),
                                30)

    # MAKE SPAWN MAP
    spawn_area = (map_.copy() * 0).astype(np.uint8)
    spawn_area = cv2.drawContours(spawn_area, hardspawn_contour, 1, (255), 40)
    spawn_area = cv2.drawContours(spawn_area, distance_contour, 1, (255), 30)

    # COMPUTE DISTANCE OF ALL PIXELS TO THE PERFECT NAVIGATION LINE
    map_optimal_nav = np.ones_like(map_, dtype=np.uint8) * 255
    map_optimal_nav = cv2.drawContours(map_optimal_nav, distance_contour, 1,
                                       (0), 1)
    map_dist2optimal_nav = cv2.distanceTransform(map_optimal_nav, cv2.DIST_L2,
                                                 5)

    # MOVE TO CORRECT PROJECTION
    spawn_area = cv2.rotate(spawn_area, cv2.ROTATE_90_COUNTERCLOCKWISE)
    map_dist2optimal_nav = cv2.rotate(map_dist2optimal_nav,
                                      cv2.ROTATE_90_COUNTERCLOCKWISE)
    spawn_area = cv2.flip(spawn_area, 0)
    map_dist2optimal_nav = cv2.flip(map_dist2optimal_nav, 0)

    # TAKES NAVIGATION LINE AND FITS SMOOTH SPLNE
    x = distance_contour[1][:, 0, 0]
    y = distance_contour[1][:, 0, 1]
    tck, u = interpolate.splprep([x, y], s=0)
    unew = np.arange(0, 1.001, 0.001)
    out = interpolate.splev(unew, tck)
    sx = out[0]
    sy = out[1]
    error = 1
    t = np.arange(sx.shape[0])
    std = error * np.ones_like(t)
    t2 = np.arange(sx.shape[0] * 4) / 4
    fx = UnivariateSpline(t, sx, k=4, w=1 / np.sqrt(std))
    fy = UnivariateSpline(t, sy, k=4, w=1 / np.sqrt(std))

    # COMPUTE CURVATURE FROM SPLINE
    sx2 = fx(t2)
    sy2 = fy(t2)
    x1 = fx.derivative(1)(t2)
    x2 = fx.derivative(2)(t2)
    y1 = fy.derivative(1)(t2)
    y2 = fy.derivative(2)(t2)
    curvature = (x1 * y2 - y1 * x2) / np.power(x1**2 + y1**2, 1.5)
    #print(sx2.shape[0])
    #print(sy2.shape)
    # COMPUTE RUNNING CURVATURE
    max_speed = 1.5  #ms
    ep_length = 60  #seconds
    lake_length = 1400.  #meters
    window_size = int(0.25 * max_speed * ep_length /
                      (lake_length / sx2.shape[0]))
    running_curvature = np.zeros_like(curvature)
    for i in range(sx2.shape[0]):
        if i < sx2.shape[0] - window_size:
            running_curvature[i] = np.mean(np.abs(curvature[i:i +
                                                            window_size]))
        else:
            running_curvature[i] = np.mean(
                np.abs(
                    (list(curvature[i:curvature.shape[0]]) +
                     list(curvature[0:i - curvature.shape[0] + window_size]))))

    # DISCTRETIZE THE SHORE LINE
    x_shore = fine_contour[0][:, 0, 0]
    y_shore = fine_contour[0][:, 0, 1]
    tck, u = interpolate.splprep([x_shore, y_shore], s=0)
    unew = np.arange(0, 1.0001, 0.0001)
    out_shore = interpolate.splev(unew, tck)
    sx_shore = out_shore[0]
    sy_shore = out_shore[1]

    # APPLY POLYNOMIAL FILTER
    fsx_shore = savgol_filter(sx_shore, 401, 2)
    fsy_shore = savgol_filter(sy_shore, 401, 2)

    # COMPUTE DISTANCE (TO CHANGE BASED ON CEDRIC'S FEEDBACK)
    diff_shore = (sx_shore - fsx_shore)**2 + (sy_shore - fsy_shore)**2

    # WINDOWED STANDARD DEVIATION
    diff_window = np.zeros_like(diff_shore)
    for i in range(sx_shore.shape[0]):
        if (i > 50) and (sx_shore.shape[0] > i + 50):
            diff_window[i] = np.std(diff_shore[i - 50:i + 50])
        elif i < 50:
            diff_window[i] = np.std(
                list(diff_shore[0:i + 50]) +
                list(diff_shore[-(sx_shore.shape[0] - i + 50):]))
        else:
            diff_window[i] = np.std(
                list(diff_shore[-(i - 50):]) +
                list(diff_shore[:sx_shore.shape[0] - i + 50]))

    rz = np.arctan2(y1, x1)
    nav_line_pose = np.vstack((sx2, sy2, rz))
    running_curvature_pose = np.vstack((sx2, sy2, running_curvature))
    spawn_poses = np.argwhere(spawn_area[:, :] == 255)

    # sample_pose_curvature dictionary
    print("Creating dictionary for sample_pose_curvature..")
    dict_curv_idx = {}
    curvature_array = running_curvature_pose[2, :]
    for idx in range(len(curvature_array)):
        key = curvature_array[idx]
        if key in dict_curv_idx.keys():
            dict_curv_idx[key].append(idx)
        else:
            dict_curv_idx[key] = [idx]
    print("Done")
    # sample_hard_spawn dictionary
    print("Creating dictionary for sample_hard_spawn..")
    dict_diff_idx = {}
    print("Done")

    return (nav_line_pose, running_curvature_pose, spawn_poses,
            map_dist2optimal_nav, dict_curv_idx, dict_diff_idx)
Ejemplo n.º 60
0
    def update_line(self, calc_inds=True):
        # update line while creating of editing...
        if not self.line:
            self.lineAux, = self.ax.plot(self.x,
                                         self.y,
                                         's',
                                         mfc='w',
                                         mec='r',
                                         picker=5,
                                         zorder=1001,
                                         ms=4)
            self.line, = self.ax.plot(self.x,
                                      self.y,
                                      'r',
                                      marker='None',
                                      lw=0.5,
                                      picker=2,
                                      zorder=1000,
                                      alpha=.7)
        else:

            n = np.unique((self.x + self.y * 1j)).size
            if self.type == 'spline' and n > 3:
                from scipy import interpolate
                if n < self.x.size:
                    tck, u = interpolate.splprep([self.x[:-1], self.y[:-1]],
                                                 s=0)
                else:
                    tck, u = interpolate.splprep([self.x, self.y], s=0)

                xnew = np.arange(0, 1.01, 0.01)
                xnew = np.linspace(0, 1, 10 * (n - 1))
                out = interpolate.splev(xnew, tck, der=0)
                xnew, ynew = out[0], out[1]

            else:  # broken line
                xnew = np.array((), 'f')
                ynew = np.array((), 'f')
                for i in range(self.x.size - 1):
                    if self.x[i + 1] != self.x[i]:
                        m = (self.y[i + 1] - self.y[i]) / (self.x[i + 1] -
                                                           self.x[i])
                        xx = np.linspace(self.x[i], self.x[i + 1], 10)
                        yy = m * (xx - self.x[i]) + self.y[i]
                    else:
                        yy = np.linspace(self.y[i], self.y[i + 1], 10)
                        xx = yy * 0 + self.x[i]

                    xnew = np.append(xnew, xx[:-1])
                    ynew = np.append(ynew, yy[:-1])

                # add last:
                xnew = np.append(xnew, xx[-1])
                ynew = np.append(ynew, yy[-1])

            if calc_inds:
                # find segment number for each point:
                iaux = []
                for i in range(self.x.size):
                    d = (xnew - self.x[i])**2 + (ynew - self.y[i])**2
                    j = np.where(d == d.min())[0][0]
                    iaux += [j]

                # set segment number:
                self.Iaux = np.zeros(xnew.shape, 'i')
                i = -1
                for i in range(len(iaux) - 2):
                    self.Iaux[iaux[i]:iaux[i + 1]] = i

                self.Iaux[iaux[i + 1]:] = i + 1

            # update lines:
            self.line.set_data(xnew, ynew)
            self.lineAux.set_data(self.x, self.y)

        # aux points stored in self.x, self.y
        # also store in xx and yy the line points if spline, and a copy of x,y if broken line
        if self.type == 'spline':
            self.xx = self.line.get_xdata()
            self.yy = self.line.get_ydata()
        else:
            self.xx, self.yy = self.x, self.y

        if self.axis: self.ax.axis(self.axis)
        self.figure.canvas.draw()