Ejemplo n.º 1
0
def getJulDatefromNc(ncfile):
    #from netCDF4 import Dataset as NetCDFFile

    from astropy.time import Time
    from datetime import datetime
    nc = NetCDFFile(ncfile)

    retval = -1
    try:
        utdate = getattr(nc, 'date')
        uttime = getattr(nc, 'start_time')
        utdate = utdate.replace("\"", "")
        utString = "%s %s" % (utdate, uttime)
        t = Time(datetime.strptime(utString, "%m/%d/%Y %H:%M:%S"),
                 scale="utc",
                 format="datetime")
        retval = t.jd
    except Exception:
        #try:
        utdate = nc.variables['Header.TimePlace.UTDate'].getValue()
        t = Time(float(utdate), scale="utc", format="decimalyear")
        retval = t.jd
    #except Exception:

    nc.close()
    return retval
Ejemplo n.º 2
0
def save_2D(filenameout,var,lat,lon,miss_val):
    import numpy as np
    from scipy.io.netcdf import netcdf_file as NetCDFFile

    n = NetCDFFile(filenameout, 'w',) # open it for writing 
    n.title = 'saved netcdf variable'

    n.createDimension('lat',len(lat))
    n.createDimension('lon',len(lon))

    latitude = n.createVariable('lat','f',('lat',))
    latitude.longname = 'latitude'
    latitude.units = 'degrees_north'
    latitude[:] = lat.astype(np.float32)

    longitude = n.createVariable('lon','f',('lon',))
    longitude.longname = 'longitude'
    longitude.units = 'degrees_east'
    longitude[:] = lon[:].astype(np.float32)

    varnc = n.createVariable('varnc','f',('lat','lon',))
    varnc.missing_value = np.array(miss_val,np.float32)
    varnc.FillValue = np.array(miss_val,np.float32)

    varnc[:,:]=var[:,:].astype(np.float32)

    n.close()
Ejemplo n.º 3
0
 def get_mask(self):
     self.array_mean = ma.mean(self.array)
     self.array_stdev = ma.std(self.array)
     self.array_range = ma.max(self.array) - ma.min(self.array)
     print "The mean is %f, the stdev is %f, the range is %f." %(self.array_mean, self.array_stdev, self.array_range)
     from scipy.io.netcdf import netcdf_file as NetCDFFile
     ### get landmask
     nc = NetCDFFile(os.getcwd()+ '/../data/netcdf_files/ORCA2_landmask.nc','r')
     self.mask = ma.masked_values(nc.variables['MASK'][:, :self.time_len, :self.lat_len, :180], -9.99999979e+33)
     nc.close()
     self.xxx, self.yyy, self.zzz = np.lib.index_tricks.mgrid[0:self.time_len, 0:self.lat_len, 0:180]
Ejemplo n.º 4
0
def getObsNum(ncfile):

    nc = NetCDFFile(ncfile)
    try:
        onum = nc.variables['Header.Dcs.ObsNum'].getValue()
    except:
        raise Exception(
            "This does not seems to be a LMT file. Use ASTE functions instead")

    nc.close()
    return onum
Ejemplo n.º 5
0
def getOffsetFromMap(ncfile):

    nc = NetCDFFile(ncfile)
    try:
        signalv = nc.variables['signal']
        azOffset = signalv.offset_x
        elOffset = signalv.offset_y
    except KeyError:
        raise Exception(
            "This does not seems to be a LMT file. Use ASTE functions instead")

    nc.close()
    return azOffset, elOffset
Ejemplo n.º 6
0
 def __init__(self,filename):
     self.filename=filename
     try:
         self.ncf=NetCDFFile(filename)
         self.readmaps(self.ncf)
     except IOError:
         raise NameError("Failed reading map {}".format(self.filename))
         self.ncf.close()
    def load_ncep_data(self, air_temp_file=None, spec_hum_file=None, trop_pres_file=None, geo_height_file=None, surface_pres_file=None):
        """Loads NCEP Reanalysis data into NetCdf objects. Returns a named tuple with objects."""
        filenames = (air_temp_file, spec_hum_file, trop_pres_file, geo_height_file, surface_pres_file)
        dflt_search_globs = ("air.*.nc", "shum.*.nc", "pres.tropp.*.nc", "hgt.*.nc", "pres.sfc.*.nc")

        data_list = []
        for data_filename, srch_glob, file_type_name in zip(filenames, dflt_search_globs, NCEPData._fields):
            if not data_filename:
                srch_res = glob(srch_glob)
                if len(srch_res) != 1:
                    raise Exception("For file type: %s expected to find 1 NCEP file, instead found: %s, using glob: %s" % (file_type_name, srch_res, srch_glob))
                data_filename = srch_res[0]
            logger.debug("Loading NCEP file for %s: %s" % (file_type_name, data_filename))
    
            # Add filename for use elsewhere
            ncep_obj = NetCDFFile(data_filename, "r")
            ncep_obj.__dict__["filename"] = data_filename
    
            data_list.append(ncep_obj)

        return NCEPData(*data_list)
    def load_ncep_data(self, air_temp_file=None, spec_hum_file=None, trop_pres_file=None, geo_height_file=None, surface_pres_file=None):
        """Loads NCEP Reanalysis data into NetCdf objects. Returns a named tuple with objects."""
        filenames = (air_temp_file, spec_hum_file, trop_pres_file, geo_height_file, surface_pres_file)
        dflt_search_globs = ("air.*.nc", "shum.*.nc", "pres.tropp.*.nc", "hgt.*.nc", "pres.sfc.*.nc")

        data_list = []
        for data_filename, srch_glob, file_type_name in zip(filenames, dflt_search_globs, NCEPData._fields):
            if not data_filename:
                srch_res = glob(srch_glob)
                if len(srch_res) != 1:
                    raise Exception("For file type: %s expected to find 1 NCEP file, instead found: %s, using glob: %s" % (file_type_name, srch_res, srch_glob))
                data_filename = srch_res[0]
            logger.debug("Loading NCEP file for %s: %s" % (file_type_name, data_filename))
    
            # Add filename for use elsewhere
            ncep_obj = NetCDFFile(data_filename, "r")
            ncep_obj.__dict__["filename"] = data_filename
    
            data_list.append(ncep_obj)

        return NCEPData(*data_list)
Ejemplo n.º 9
0
def read(filename):
    import numpy as np
    from numpy import ma
    # from Scientific.IO.NetCDF import NetCDFFile
    from scipy.io.netcdf import netcdf_file as NetCDFFile
    """
    read a netcdf file and return a dictionnary with 
    key: name of the variables: value (array)
    array is masked is missing_values defined 
    in the netcdf 
    """

    nc = NetCDFFile(filename, 'r')  # open it for writing

    #     number of dimensions
    #     ndim = nc.dimensions.__len__()
    #     dim_dict = nc.dimensions

    var_dict = {}

    for i in nc.variables.iterkeys():
        exec("cdf_var = nc.variables['" + i + "']")
        #exec(i + " = nc.variables['" + i + "'].getValue()")
        exec(i + " = nc.variables['" + i + "'][...]")
        exec(i + " = np.squeeze(" + i + ")")
        if '_FillValue' in dir(cdf_var):
            miss_val = np.float(cdf_var._FillValue)
            exec(i + " = ma.masked_values(" + i + ",miss_val)")
        if 'FillValue' in dir(cdf_var):
            miss_val = np.float(cdf_var.FillValue)
            exec(i + " = ma.masked_values(" + i + ",miss_val)")
        if '_missing_value' in dir(cdf_var):
            miss_val = np.float(cdf_var._missing_value)
            exec(i + " = ma.masked_values(" + i + ",miss_val)")
        if 'missing_value' in dir(cdf_var):
            miss_val = np.float(cdf_var.missing_value)
            exec(i + " = ma.masked_values(" + i + ",miss_val)")
        exec("var_dict['" + i + "'] = " + i + ".astype(np.float32)")
    nc.close()
    return var_dict
Ejemplo n.º 10
0
    def __init__(self, ncFileName, source=None):
        if os.path.exists(ncFileName):
            self.filename = ncFileName
            self.filtered = False
            if not source is None:
                self.source = source
            try:
                ncFile = NetCDFFile(ncFileName)
                self.loadFromNcFile(ncFile)
                ncFile.close()
            except RuntimeError:
                #try:
                savFile = readsav(ncFileName)
                self.loadFromIDLSav(savFile)
                #except Exception:
                #raise  Exception ("AzTEC Map Error. Unknown format")
#
            self.fixWeightMap()
            self.calculateSNMap()

        else:
            raise Exception("AztecMap Error. No such file or directory")
Ejemplo n.º 11
0
class Azmap(object):
    """This is a short version of AztecMap."""
    def __init__(self,filename):
        self.filename=filename
        try:
            self.ncf=NetCDFFile(filename)
            self.readmaps(self.ncf)
        except IOError:
            raise NameError("Failed reading map {}".format(self.filename))
            self.ncf.close()
    
    def readmaps(self,ncf):
        try:
            self.signal=(np.array(ncf.variables['signal'][:]).T)[::-1,::-1]
            self.weight=(np.array(ncf.variables['weight'][:]).T)[::-1,::-1]
            self.fSignal=(np.array(ncf.variables['filteredSignal'][:]).T)[::-1,::-1]
            self.fWeight=(np.array(ncf.variables['filteredWeight'][:]).T)[::-1,::-1]
        except Exception:
            raise Exception("File {} is damaged".format(self.filename))
        finally:
            # Si todo va bien, que cierre el ncf,
            # si ocurre una excepcion, que cierre el ncf
            ncf.close()
Ejemplo n.º 12
0
def save_3D(filenameout,var,varname,lat,lon,miss_val,time_it):
    import numpy as np
    from scipy.io.netcdf import netcdf_file as NetCDFFile
    """
    savenetcdf_3D(filenameout,var,varname,lat,lon,miss_val,time_it)
    save a 3D (time,lat,lon) numpy array into netcdf
    arguments:
    filenameout: string 
    var: np.array
    varname: string
    lat: np.array 
    lon: np.array
    miss_val: real
    time_it: np.array (dtype=int)
    """

    n = NetCDFFile(filenameout, 'w',) # open it for writing 
    n.title = 'saved netcdf variable'

    n.createDimension('time',None)
    n.createDimension('lat',len(lat))
    n.createDimension('lon',len(lon))

    latitude = n.createVariable('lat','f',('lat',))
    latitude.longname = 'latitude'
    latitude.units = 'degrees_north'
    latitude[:] = lat[:].astype(np.float32)

    longitude = n.createVariable('lon','f',('lon',))
    longitude.longname = 'longitude'
    longitude.units = 'degrees_east'
    longitude[:] = lon[:].astype(np.float32)

    time =  n.createVariable('time','i',('time',))
    time.units = 'days since 1979-1-1 00:00:0.0'
    time.delta_t = '0000-00-01 00:00:00'

    varnc = n.createVariable(varname,'f',('time','lat','lon',))
    varnc.missing_value = np.array(miss_val,np.float32)
    varnc._FillValue = np.array(miss_val,np.float32)

    for l in range(0,var.shape[0]):
        time[l]=time_it[l,]
        varnc[l,:,:]=var[l,:,:].astype(np.float32)

    n.close()
Ejemplo n.º 13
0
def Parse_extents(src_fn):
    out = {}
    src_ext = os.path.splitext(src_fn)[1]
    if src_ext == None:
        print '[ ERROR ] input should be MODIS hdf, MODIS or ERA hdf5, ERA netcdf (CF-1.0), shapefile, or geoTIFF' 
        sys.exit( 1 )
    elif src_ext == '.shp':
        toprint =  'reading shapefile extents'
        src         = ogr.Open(src_fn)
        layer       = src.GetLayer()
        extent      = layer.GetExtent()
        out['dx']   = 'shapefile'
        out['dy']   = 'shapefile'
        out['srs']  = layer.GetSpatialRef()
        out['xmin'] = extent[0]
        out['xmax'] = extent[1]
        out['ymin'] = extent[2]
        out['ymax'] = extent[3]
    elif src_ext in ('.tif', '.hdf'):
        import gdal
        ras = gdal.Open(src_fn)
        if src_ext=='.hdf':
            toprint =  'reading MODIS hdf grid extents'
            # get subdataset (all have the same params in modis)
            dset0 = ras.GetSubDatasets()[0][0] # first listed subdataset
            del ras
            ras = gdal.Open(dset0)
        elif src_ext=='.tif':
            toprint =  'reading GeoTIFF extents'
        srs = osr.SpatialReference()
        tmp = srs.ImportFromWkt(ras.GetProjection())
        if tmp == 1:
            print '[ERROR] FAILED to import projection from raster file'
            sys.exit( 1 )
        gt          = ras.GetGeoTransform()
        out['srs']  = srs
        out['dx']   = gt[1]
        out['dy']   = abs(gt[-1]) # abs if this should be negative
        out['xmin'] = gt[0]
        out['ymax'] = gt[3]
        out['xmax'] = out['xmin'] + ras.RasterXSize*out['dx']
        out['ymin'] = out['ymax'] - ras.RasterYSize*out['dy']
        del ras
    elif src_ext == '.hdf5':
        toprint = 'reading hdf5 stack'
        import h5py
        fn = os.path.split(src_fn)[-1]
        prj_name = fn.split('_')[0]
        sds = os.path.splitext(fn)[0].split(prj_name+'_')[1]
        hdf = h5py.File(src_fn,'r')
        out['dx']   = hdf[sds].attrs['dx']
        out['dy']   = np.abs(hdf[sds].attrs['dy'])
        out['srs']  = osr.SpatialReference()
        out['srs'].ImportFromWkt(hdf[sds].attrs['projection'])
        out['xmin'] = np.min(hdf['x'])
        out['xmax'] = np.max(hdf['x'])+out['dx']
        out['ymin'] = np.min(hdf['y'])-out['dy']
        out['ymax'] = np.max(hdf['y'])
    elif src_ext == '.nc':
        #from Scientific.IO.NetCDF import NetCDFFile
        from scipy.io.netcdf import netcdf_file as NetCDFFile
        #Can this simply drop in like this?
        toprint =  'converting NetCDF Grid'
        toprint =  'assuming Geographic coordinates, WGS84'
        get4326 = osr.SpatialReference();get4326.ImportFromEPSG(4326)
        epsg4326 = get4326
        out['srs'] = epsg4326
        ras =  NetCDFFile(src_fn,'r')
        lat = ras.variables['latitude'][:]
        lon = ras.variables['longitude'][:]
        ras.close()
        out['dx']   = float(lat[0] - lat[1])
        out['dy']   = float(np.abs(lon[0] - lon[1]))
        out['xmin'] = float(np.min(lon)) - 0.5 * out['dx']
        out['ymax'] = float(np.max(lat)) + 0.5 * out['dy']
        out['xmax'] = float(np.max(lon)) + 0.5 * out['dx']
        out['ymin'] = float(np.min(lat)) - 0.5 * out['dy']
    else:
        print '[ ERROR ] input file not of type tif|hdf|nc' 
        sys.exit( 1 )

    return out
Ejemplo n.º 14
0
 def writeToNc(self, ncFileName):
     ncFile = NetCDFFile(ncFileName, 'w')
     ncFile.createDimension("nrows", self.RaCoords.shape[0])
     ncFile.createDimension("ncols", self.DecCoords.shape[0])
     dims = ("nrows", "ncols")
     drow = ("nrows", )
     dcol = ("ncols", )
     ncFile.createVariable("signal", "d", dims)
     ncFile.createVariable("weight", "d", dims)
     ncFile.createVariable("kernel", "d", dims)
     ncFile.createVariable("rowCoordsPhys", "d", drow)
     ncFile.createVariable("colCoordsPhys", "d", dcol)
     ncFile.createVariable("xCoordsAbs", "d", dims)
     ncFile.createVariable("yCoordsAbs", "d", dims)
     ncFile.createVariable("filteredSignal", "d", dims)
     ncFile.createVariable("filteredWeight", "d", dims)
     ncFile.createVariable("filteredKernel", "d", dims)
     setattr(ncFile, "source", "%s" % self.source)
     setattr(ncFile, "MasterGrid[0]", self.SourceRa / 180.0 * (npy.pi))
     setattr(ncFile, "MasterGrid[1]", self.SourceDec / 180.0 * (npy.pi))
     ncFile.variables['signal'][:] = self.signal.value
     ncFile.variables['weight'][:] = self.weight.value
     ncFile.variables['rowCoordsPhys'][:] = self.RaCoords / 180.0 * (npy.pi)
     ncFile.variables['colCoordsPhys'][:] = self.DecCoords / 180.0 * (
         npy.pi)
     ncFile.variables['kernel'][:] = self.kernel
     ncFile.variables['xCoordsAbs'][:] = self.AbsRaCoords.to("rad").value
     ncFile.variables['yCoordsAbs'][:] = self.AbsDecCoords.to("rad").value
     if self.filtered:
         ncFile.variables['filteredSignal'][:] = self.fSignal.value
         ncFile.variables['filteredWeight'][:] = self.fWeight.value
         ncFile.variables['filteredKernel'][:] = self.fKernel
     else:
         ncFile.variables['filteredSignal'][:] = self.signal.value
         ncFile.variables['filteredWeight'][:] = self.weight.value
         ncFile.variables['filteredKernel'][:] = self.kernel
     ncFile.sync()
     ncFile.close()
Ejemplo n.º 15
0
def createBstatsFile(ncfile, outFile=None):

    from scipy.interpolate import interp1d
    from xml.etree.ElementTree import Element, SubElement

    if outFile is None:
        outFile = ncfile.replace(".nc", ".bstats")

    jdate = getJulDatefromNc(ncfile)
    season = getAztecSeason(jdate)

    if season.find("LMT") > -1:

        nc = NetCDFFile(ncfile)
        elSignal = npy.mean(nc.variables['Data.AztecBackend.TelElAct'][:])
        elSignal = elSignal.flatten()
        meanEl = npy.degrees(npy.median(elSignal))
        nc.close()
        namePrefix = "Data.AztecBackend."
    else:
        meanEl = None
        namePrefix = ""

    calpath = os.path.join(os.getenv("AZTEC_MACANA_PATH"), "calibration/")
    bololistfile = os.path.join(calpath, "parameters_%s" % season,
                                "bololist.csv")
    tausave = os.path.join(calpath, "parameters_%s" % season,
                           "fit_parameters_bolodc2tau_%s.sav" % season)
    ressave = os.path.join(
        calpath, "parameters_%s" % season,
        "fit_parameters_bolodc2responsivity_%s.sav" % season)

    bololist = npy.loadtxt(bololistfile,
                           delimiter=",",
                           comments="#",
                           dtype={
                               'names': (
                                   'boloname',
                                   'flags',
                               ),
                               'formats': ('|S10', 'i4')
                           })

    nbolo = len(bololist)
    boloInfo = []
    jbolo = 1
    for ibolo in bololist:
        boloInfo.append({
            'boloName': namePrefix + ibolo[0],
            'valid': ibolo[1],
            'id': jbolo
        })
        jbolo += 1

    tauInfo = readsav(tausave)
    resInfo = readsav(ressave)

    for ibolo, i in zip(boloInfo, range(nbolo)):

        if "offset" in tauInfo.keys():
            ibolo['tau_offset'] = tauInfo['offset'][i]
            ibolo['tau_offset_err'] = tauInfo['offset_err'][i]
            ibolo['tau_slope'] = tauInfo['slope'][i]
            ibolo['tau_slope_err'] = tauInfo['slope_err'][i]
            ibolo['tau_quad'] = 0.0
            ibolo['tau_quad_err'] = 0.0
        elif "p0" in tauInfo.keys():
            ibolo['tau_offset'] = tauInfo['p0'][i]
            ibolo['tau_offset_err'] = tauInfo['p0_err'][i]
            ibolo['tau_slope'] = tauInfo['p1'][i]
            ibolo['tau_slope_err'] = tauInfo['p1_err'][i]
            ibolo['tau_quad'] = tauInfo['p2'][i]
            ibolo['tau_quad_err'] = tauInfo['p2_err'][i]
        else:
            raise Exception("Cannot get Tau2dc information properly.")
        ibolo['res_offset'] = resInfo['offset'][i]
        ibolo['res_offset_err'] = resInfo['offset_err'][i]
        ibolo['res_slope'] = resInfo['slope'][i]
        ibolo['res_slope_err'] = resInfo['slope_err'][i]

#Now interpolate the gain values
    interpolateParams(jdate, boloInfo, meanEl=meanEl)
    boloInfo2Xml(outFile, boloInfo)