Ejemplo n.º 1
0
def solve_discrete_lyapunov(A, B, max_it=50, method="doubling"):
    r"""
    Computes the solution to the discrete lyapunov equation

    .. math::

        AXA' - X + B = 0

    X is computed by using a doubling algorithm. In particular, we
    iterate to convergence on X_j with the following recursions for j =
    1, 2,... starting from X_0 = B, a_0 = A:

    .. math::

        a_j = a_{j-1} a_{j-1}

        X_j = X_{j-1} + a_{j-1} X_{j-1} a_{j-1}'

    Parameters
    ----------
    A : array_like(float, ndim=2)
        An n x n matrix as described above.  We assume in order for
        convergence that the eigenvalues of A have moduli bounded by
        unity
    B : array_like(float, ndim=2)
        An n x n matrix as described above.  We assume in order for
        convergence that the eigenvalues of A have moduli bounded by
        unity
    max_it : scalar(int), optional(default=50)
        The maximum number of iterations
    method : string, optional(default="doubling")
        Describes the solution method to use.  If it is "doubling" then
        uses the doubling algorithm to solve, if it is "bartels-stewart"
        then it uses scipy's implementation of the Bartels-Stewart
        approach.

    Returns
    ========
    gamma1: array_like(float, ndim=2)
        Represents the value V

    """
    if method == "doubling":
        A, B = list(map(np.atleast_2d, [A, B]))
        alpha0 = A
        gamma0 = B

        diff = 5
        n_its = 1

        while diff > 1e-15:

            alpha1 = alpha0.dot(alpha0)
            gamma1 = gamma0 + np.dot(alpha0.dot(gamma0), alpha0.conjugate().T)

            diff = np.max(np.abs(gamma1 - gamma0))
            alpha0 = alpha1
            gamma0 = gamma1

            n_its += 1

            if n_its > max_it:
                msg = "Exceeded maximum iterations {}, check input matrics"
                raise ValueError(msg.format(n_its))

    elif method == "bartels-stewart":
        gamma1 = sp_solve_discrete_lyapunov(A, B)

    else:
        msg = "Check your method input. Should be doubling or bartels-stewart"
        raise ValueError(msg)

    return gamma1
Ejemplo n.º 2
0
def solve_discrete_lyapunov(A, B, max_it=50, method="doubling"):
    r"""
    Computes the solution to the discrete lyapunov equation

    .. math::

        AXA' - X + B = 0

    X is computed by using a doubling algorithm. In particular, we
    iterate to convergence on X_j with the following recursions for j =
    1, 2,... starting from X_0 = B, a_0 = A:

    .. math::

        a_j = a_{j-1} a_{j-1}

        X_j = X_{j-1} + a_{j-1} X_{j-1} a_{j-1}'

    Parameters
    ----------
    A : array_like(float, ndim=2)
        An n x n matrix as described above.  We assume in order for
        convergence that the eigenvalues of A have moduli bounded by
        unity
    B : array_like(float, ndim=2)
        An n x n matrix as described above.  We assume in order for
        convergence that the eigenvalues of A have moduli bounded by
        unity
    max_it : scalar(int), optional(default=50)
        The maximum number of iterations
    method : string, optional(default="doubling")
        Describes the solution method to use.  If it is "doubling" then
        uses the doubling algorithm to solve, if it is "bartels-stewart"
        then it uses scipy's implementation of the Bartels-Stewart
        approach.

    Returns
    ========
    gamma1: array_like(float, ndim=2)
        Represents the value V

    """
    if method=="doubling":
        A, B = list(map(np.atleast_2d, [A, B]))
        alpha0 = A
        gamma0 = B

        diff = 5
        n_its = 1

        while diff > 1e-15:

            alpha1 = alpha0.dot(alpha0)
            gamma1 = gamma0 + np.dot(alpha0.dot(gamma0), alpha0.conjugate().T)

            diff = np.max(np.abs(gamma1 - gamma0))
            alpha0 = alpha1
            gamma0 = gamma1

            n_its += 1

            if n_its > max_it:
                msg = "Exceeded maximum iterations {}, check input matrics"
                raise ValueError(msg.format(n_its))

    elif method=="bartels-stewart":
        gamma1 = sp_solve_discrete_lyapunov(A, B)

    else:
        msg = "Check your method input. Should be doubling or bartels-stewart"
        raise ValueError(msg)

    return gamma1