Ejemplo n.º 1
0
 def get_space_connected_to_position(layer, position):
     empty_mask = (layer != Tiles.wall)
     labeled_components, component_count = label_connected_components(
         empty_mask)
     label = labeled_components[tuple(position)]
     connected_space = (labeled_components == label)
     return connected_space
Ejemplo n.º 2
0
 def get_random_positions_for_lock(layer, start_position):
     connected_space = MissionGenerator.get_space_connected_to_position(
         layer, start_position)
     connected_walls_and_corridors = MissionGenerator.get_walls_and_corridors_connected_to_space(
         layer, connected_space)
     connected_walls_and_corridors_components, component_count = label_connected_components(
         connected_walls_and_corridors)
     random_positions = MissionGenerator.get_random_positions_per_component(
         connected_walls_and_corridors_components, component_count, 1)
     return random_positions
Ejemplo n.º 3
0
 def get_space_component_masks(layer):
     masks = []
     empty_space = (layer == Tiles.empty)
     connected_components, component_count = label_connected_components(
         empty_space)
     for component_label in range(1, component_count + 1):
         component_mask = (
             connected_components == component_label).astype(int)
         masks.append(component_mask)
     return masks
Ejemplo n.º 4
0
 def remove_hazard_component(layer, hazard_position, hazard_tile):
     hazard_mask = (layer == hazard_tile)
     labeled_components, component_count = label_connected_components(
         hazard_mask)
     hazard_label = labeled_components[hazard_position]
     layer[labeled_components == hazard_label] = Tiles.empty
Ejemplo n.º 5
0
sub = sitk.ReadImage('./segmentation-0.nii')
# Get Numpy data and compress to int8.
reference_volume = sitk.GetArrayFromImage(ref)#.astype(np.int8)
lreference_volume = reference_volume.view((1,75,512,512))
submission_volume = sitk.GetArrayFromImage(sub).astype(np.int8)
# Ensure that the shapes of the masks match.
if submission_volume.shape!=reference_volume.shape:
    raise AttributeError("Shapes do not match! Prediction mask {}, "
                         "ground truth mask {}"
                         "".format(submission_volume.shape,
                                   reference_volume.shape))

# Create  masks with labeled connected components.
# (Assuming there is always exactly one liver - one connected comp.)
pred_mask_liver = submission_volume;pred_mask_liver[submission_volume>=1]=1
pred_mask_lesion, num_predicted = label_connected_components(submission_volume==2, output=np.int16)#default structuring is 2-D array, so the input demension is?

true_mask_liver = reference_volume;true_mask_liver[reference_volume>=1]=1
true_mask_lesion, num_reference = label_connected_components(reference_volume==2, output=np.int16)
liver_prediction_exists = np.any(submission_volume==1)
# Compute per-case (per patient volume) dice.
if not np.any(pred_mask_lesion) and not np.any(true_mask_lesion):
    tumor_dice_per_case = 1.
else:
    tumor_dice_per_case = metric.dc(pred_mask_lesion, true_mask_lesion)
if liver_prediction_exists:
    liver_dice_per_case = metric.dc(pred_mask_liver, true_mask_liver)
else:
    liver_dice_per_case = 0

print(tumor_dice_per_case)
Ejemplo n.º 6
0
    # Get Numpy data and compress to int8.
    reference_volume = (reference_volume.get_data()).astype(np.int8)
    submission_volume = (submission_volume.get_data()).astype(np.int8)

    # Ensure that the shapes of the masks match.
    if submission_volume.shape != reference_volume.shape:
        raise AttributeError("Shapes do not match! Prediction mask {}, "
                             "ground truth mask {}"
                             "".format(submission_volume.shape,
                                       reference_volume.shape))
    print("Done loading files ({:.2f} seconds)".format(t()))

    # Create lesion and liver masks with labeled connected components.
    # (Assuming there is always exactly one liver - one connected comp.)
    pred_mask_lesion, num_predicted = label_connected_components( \
                                         submission_volume==2, output=np.int16)
    true_mask_lesion, num_reference = label_connected_components( \
                                         reference_volume==2, output=np.int16)
    pred_mask_liver = submission_volume >= 1
    true_mask_liver = reference_volume >= 1
    liver_prediction_exists = np.any(submission_volume == 1)
    print("Done finding connected components ({:.2f} seconds)".format(t()))

    # Identify detected lesions.
    # Retain detected_mask_lesion for overlap > 0.5
    for overlap in [0, 0.5]:
        detected_mask_lesion, mod_ref_mask, num_detected = detect_lesions( \
                                              prediction_mask=pred_mask_lesion,
                                              reference_mask=true_mask_lesion,
                                              min_overlap=overlap)
Ejemplo n.º 7
0
 def fill_unused_space(level):
     start_position = np.argwhere(level.upper_layer == Tiles.player)[0]
     non_wall_mask = (level.upper_layer != Tiles.wall).astype(int)
     connected_components, component_count = label_connected_components(non_wall_mask)
     used_space_component = connected_components[tuple(start_position)]
     level.upper_layer[connected_components != used_space_component] = Tiles.wall
Ejemplo n.º 8
0
 def get_potential_lock_components(layer):
     potential_lock_mask = MissionGenerator.get_wall_corridor_mask(layer)
     labeled_components, component_count = label_connected_components(
         potential_lock_mask)
     return labeled_components, component_count
Ejemplo n.º 9
0
 def get_rooms_components(layer):
     empty_mask = (layer == Tiles.empty)
     labeled_components, component_count = label_connected_components(
         empty_mask)
     return labeled_components, component_count