def test_for_simetric_indefinite_matrix(self):

        # Define test matrix A.
        # Note that the leading 5x5 submatrix is indefinite.
        A = np.asarray([[1, 2, 3, 7, 8],
                        [2, 5, 5, 9, 0],
                        [3, 5, 11, 1, 2],
                        [7, 9, 1, 7, 5],
                        [8, 0, 2, 5, 8]])

        # Get Cholesky from lapack functions
        cholesky, = get_lapack_funcs(('potrf',), (A,))

        # Compute Cholesky Decomposition
        c, k = cholesky(A, lower=False, overwrite_a=False, clean=True)

        delta, v = singular_leading_submatrix(A, c, k)

        A[k-1, k-1] += delta

        # Check if the leading submatrix is singular.
        assert_array_almost_equal(det(A[:k, :k]), 0)

        # Check if `v` fullfil the specified properties
        quadratic_term = np.dot(v, np.dot(A, v))
        assert_array_almost_equal(quadratic_term, 0)
Ejemplo n.º 2
0
    def test_for_simetric_indefinite_matrix(self):

        # Define test matrix A.
        # Note that the leading 5x5 submatrix is indefinite.
        A = np.asarray([[1, 2, 3, 7, 8],
                        [2, 5, 5, 9, 0],
                        [3, 5, 11, 1, 2],
                        [7, 9, 1, 7, 5],
                        [8, 0, 2, 5, 8]])

        # Get Cholesky from lapack functions
        cholesky, = get_lapack_funcs(('potrf',), (A,))

        # Compute Cholesky Decomposition
        c, k = cholesky(A, lower=False, overwrite_a=False, clean=True)

        delta, v = singular_leading_submatrix(A, c, k)

        A[k-1, k-1] += delta

        # Check if the leading submatrix is singular.
        assert_array_almost_equal(det(A[:k, :k]), 0)

        # Check if `v` fullfil the specified properties
        quadratic_term = np.dot(v, np.dot(A, v))
        assert_array_almost_equal(quadratic_term, 0)
Ejemplo n.º 3
0
    def test_for_first_element_equal_to_zero(self):

        # Define test matrix A.
        # Note that the leading 2x2 submatrix is singular.
        A = np.array([[0, 3, 11], [3, 12, 5], [11, 5, 6]])

        # Get Cholesky from lapack functions
        cholesky, = get_lapack_funcs(('potrf', ), (A, ))

        # Compute Cholesky Decomposition
        c, k = cholesky(A, lower=False, overwrite_a=False, clean=True)

        delta, v = singular_leading_submatrix(A, c, k)

        A[k - 1, k - 1] += delta

        # Check if the leading submatrix is singular
        assert_array_almost_equal(det(A[:k, :k]), 0)

        # Check if `v` fullfil the specified properties
        quadratic_term = np.dot(v, np.dot(A, v))
        assert_array_almost_equal(quadratic_term, 0)
Ejemplo n.º 4
0
    def test_for_first_element_equal_to_zero(self):

        # Define test matrix A.
        # Note that the leading 2x2 submatrix is singular.
        A = np.array([[0, 3, 11],
                      [3, 12, 5],
                      [11, 5, 6]])

        # Get Cholesky from lapack functions
        cholesky, = get_lapack_funcs(('potrf',), (A,))

        # Compute Cholesky Decomposition
        c, k = cholesky(A, lower=False, overwrite_a=False, clean=True)

        delta, v = singular_leading_submatrix(A, c, k)

        A[k-1, k-1] += delta

        # Check if the leading submatrix is singular
        assert_array_almost_equal(det(A[:k, :k]), 0)

        # Check if `v` fullfil the specified properties
        quadratic_term = np.dot(v, np.dot(A, v))
        assert_array_almost_equal(quadratic_term, 0)