Ejemplo n.º 1
0
    def _design(self):
        if not self.stopband_attenuation and 'stopband_attenuation' in self.filter_parameters:
            self.stopband_attenuation = self.filter_parameters['stopband_attenuation']
        elif not self.stopband_attenuation and 'stopband_attenuation' not in self.filter_parameters:
            raise ValueError("Needs a stopband_attenuation value.")

        if self.already_normalized_Wn:
            self.Z, self.P, self.K = signal.cheby2(self.N, self.stopband_attenuation, self.Wn,
                                                   self.filter_kind, analog=False,
                                                   output='zpk')
        else:
            self.Z, self.P, self.K = signal.cheby2(self.N, self.stopband_attenuation, self.normalize_Wn(),
                                                   self.filter_kind, analog=False,
                                                   output='zpk')
Ejemplo n.º 2
0
def lowpass_cheby_2(data, freq, df, maxorder=12, ba=False,
                    freq_passband=False):
    """
    Cheby2-Lowpass Filter

    Filter data by passing data only below a certain frequency.
    The main purpose of this cheby2 filter is downsampling.
    #318 shows some plots of this filter design itself.

    This method will iteratively design a filter, whose pass
    band frequency is determined dynamically, such that the
    values above the stop band frequency are lower than -96dB.

    :type data: numpy.ndarray
    :param data: Data to filter.
    :param freq: The frequency above which signals are attenuated
        with 95 dB
    :param df: Sampling rate in Hz.
    :param maxorder: Maximal order of the designed cheby2 filter
    :param ba: If True return only the filter coefficients (b, a) instead
        of filtering
    :param freq_passband: If True return additionally to the filtered data,
        the iteratively determined pass band frequency
    :return: Filtered data.
    """
    nyquist = df * 0.5
    # rp - maximum ripple of passband, rs - attenuation of stopband
    rp, rs, order = 1, 96, 1e99
    ws = freq / nyquist  # stop band frequency
    wp = ws  # pass band frequency
    # raise for some bad scenarios
    if ws > 1:
        ws = 1.0
        msg = "Selected corner frequency is above Nyquist. " + \
              "Setting Nyquist as high corner."
        warnings.warn(msg)
    while True:
        if order <= maxorder:
            break
        wp = wp * 0.99
        order, wn = cheb2ord(wp, ws, rp, rs, analog=0)
    if ba:
        return cheby2(order, rs, wn, btype='low', analog=0, output='ba')
    z, p, k = cheby2(order, rs, wn, btype='low', analog=0, output='zpk')
    sos = zpk2sos(z, p, k)
    if freq_passband:
        return sosfilt(sos, data), wp * nyquist
    return sosfilt(sos, data)
Ejemplo n.º 3
0
def zerophase_chebychev_lowpass_filter(trace, freqmax, verbose, ofid=None):
    """
    Custom Chebychev type two zerophase lowpass filter useful for decimation
    filtering.

    This filter is stable up to a reduction in frequency with a factor of 10.
    If more reduction is desired, simply decimate in steps.

    Partly based on a filter in ObsPy.

    :param data: Input trace
    :param freqmax: The desired lowpass frequency.

    Will be replaced once ObsPy has a proper decimation filter.
    """

    # rp - maximum ripple of passband, rs - attenuation of stopband
    rp, rs, order = 1, 96, 1e99
    ws = freqmax / (trace.stats.sampling_rate * 0.5)  # stop band frequency
    wp = ws  # pass band frequency

    while True:
        if order <= 12:
            break
        wp *= 0.99
        order, wn = cheb2ord(wp, ws, rp, rs, analog=0)

    b, a = cheby2(order, rs, wn, btype="low", analog=0, output="ba")

    # Apply twice to get rid of the phase distortion.
    trace.data = filtfilt(b, a, trace.data)
Ejemplo n.º 4
0
    def add_antialias(self,Fs,freq,maxorder=8):
        # From obspy
        nyquist = Fs * 0.5
        
        # rp - maximum ripple of passband, rs - attenuation of stopband
        rp, rs, order = 1, 96, 1e99
        ws = freq / nyquist  # stop band frequency
        wp = ws  # pass band frequency
        # raise for some bad scenarios
        if ws > 1:
            ws = 1.0
            msg = "** Selected corner frequency is above Nyquist. " + \
                  "** Setting Nyquist as high corner."
            warnings.warn(msg)
        while True:
            if order <= maxorder:
                break
            wp = wp * 0.99
            order, wn = cheb2ord(wp, ws, rp, rs, analog=0)
        
        z, p, k = cheby2(order, rs, wn, 
            btype='low', analog=0, output='zpk')

        self.anti_alias = zpk2sos(z,p,k)
        return()
Ejemplo n.º 5
0
def add_lfp(spike_entry, raw_entry, Nlfp, cutoff=300, order=4,
            ripple=20, lfp_sampling_rate=1000, verbose=True):
    """adds first N lfp channels to the spike_entry"""
    data_channels = [x for x in raw_entry.values()
                     if isinstance(x, h5py.Dataset)
                     and 'datatype' in x.attrs
                     and int(x.attrs['datatype']) < 1000]
    print(len(data_channels))
    data_channels = sorted(data_channels, key=repr)[:Nlfp]
    
    for chan in data_channels:
        if verbose:
            print("lfp chan: {}".format(chan))
        # low pass filter
        b, a = cheby2(order, ripple,
                      cutoff / (chan.attrs['sampling_rate'] / 2.))
        lfp = filtfilt(b, a, chan)
        # resample
        old_x = np.arange(len(chan)) / chan.attrs['sampling_rate']
        resample_ratio = chan.attrs['sampling_rate'] / lfp_sampling_rate
        new_x = np.arange(len(chan) / resample_ratio) / lfp_sampling_rate
        resamp_lfp = np.interp(new_x, old_x, lfp)
        arf.create_dataset(spike_entry, chan.name, resamp_lfp,
                           units='samples', datatype=2,
                           sampling_rate=lfp_sampling_rate)
Ejemplo n.º 6
0
def lowpass_cheby2_coeffs(freq, sr, maxorder=12):
    # type: (float, int, int) -> Tuple[np.ndarray, np.ndarray, float]
    """
    freq    : The frequency above which signals are attenuated
              with 95 dB
    sr      : Sampling rate in Hz.
    maxorder: Maximal order of the designed cheby2 filter

    Returns --> (b coeffs, a coeffs, freq_passband)
    """
    
    nyquist = sr * 0.5
    # rp - maximum ripple of passband, rs - attenuation of stopband
    rp, rs, order = 1, 96, 1e99
    ws = freq / nyquist  # stop band frequency
    wp = ws              # pass band frequency
    # raise for some bad scenarios
    if ws > 1:
        ws = 1.0
        msg = "Selected corner frequency is above Nyquist. " + \
              "Setting Nyquist as high corner."
        warnings.warn(msg)
    while True:
        if order <= maxorder:
            break
        wp = wp * 0.99
        order, wn = signal.cheb2ord(wp, ws, rp, rs, analog=0)
    b, a = signal.cheby2(order, rs, wn, btype='low', analog=0, output='ba')
    return b, a, wp*nyquist
Ejemplo n.º 7
0
    def __init__(self, frequency, band):
        """
        """
        fn = frequency / 2.0
        b, a = cheby2(1, 10, np.array(band)/ fn, btype = "bandpass")

        self.b = b
        self.a = a
Ejemplo n.º 8
0
 def HPmin(self, fil_dict):
     self._get_params(fil_dict)
     self.N, self.F_SBC = cheb2ord(self.F_PB, self.F_SB,self.A_PB,self.A_SB,
                                                   analog=self.analog)
     if not self._test_N():
         return -1
     self._save(fil_dict, sig.cheby2(self.N, self.A_SB, self.F_SBC,
                     btype='highpass', analog=self.analog, output=self.FRMT))
Ejemplo n.º 9
0
 def BSmin(self, fil_dict):
     self._get_params(fil_dict)
     self.N, self.F_SBC = cheb2ord([self.F_PB, self.F_PB2],
         [self.F_SB, self.F_SB2], self.A_PB, self.A_SB, analog=self.analog)
     if not self._test_N():
         return -1
     self._save(fil_dict, sig.cheby2(self.N, self.A_SB, self.F_SBC,
                     btype='bandstop', analog=self.analog, output=self.FRMT))
Ejemplo n.º 10
0
    def __init__(self, frequency, threshold):
        """
        """
        fn = frequency / 2.0
        b, a = cheby2(1, 10, threshold / fn, btype = "lowpass")

        self.b = b
        self.a = a
Ejemplo n.º 11
0
def decode_efm(apply_filters=True, apply_demp=False, just_log=True, random_input=False):
    """ Decode EFM from STDIN, assuming it's a 28Mhz 8bit raw stream.
          apply_filters    apply lowpass/highpass filters
          apply_demp       apply de-emphasis filter (False for CD Audio)
          just_log         just log to stderr, don't bother decoding
          random_input     run against white noise"""
    if random_input:
        data = np.random.random_integers(-10000, 10000, SAMPLES)
    else:
        data = np.fromstring(sys.stdin.read(SAMPLES), dtype=np.uint8).astype(np.int16)
        data = sps.detrend(data, type='constant')  # Remove DC
        data = auto_gain(data, 10000, 'pre-filter')  # Expand before filtering, since we'll lose much of signal otherwise

    if apply_demp:
        # This is too slow, need to work out a way to do it in scipy
        de_emphasis_filter = biquad_filter(-1.8617006585639506, 0.8706642683920058, 0.947680874725466,
                                           -1.8659578411373265, 0.9187262110931641)
        data = np.fromiter(run_filter(de_emphasis_filter, data), np.int16)  # De-emph - 26db below 500khz

    if apply_filters:
        # bandpass = sps.firwin(8191, [0.013 / FREQ_MHZ, 2.1 / FREQ_MHZ], pass_zero=False)
        # data = sps.lfilter(bandpass, 1, data)

        low_pass = sps.cheby2(16, 100., 4.3 / FREQ_MHZ)  # Looks a bit odd, but is a reasonable tie for the spec filter (-26db at 2.0 Mhz, -50+ at 2.3Mhz)
        # low_pass = sps.cheby2(10, 50., 4.3 / FREQ_MHZ)  # Looks a bit odd, but is a reasonable tie for the spec filter (-26db at 2.0 Mhz, -50+ at 2.3Mhz)
        data = sps.filtfilt(low_pass[0], low_pass[1], data)

    bit_gen = edgeclock_decode(data, 0., 6.626)
    data_frames = []

    try:
        frame_bytes = []
        frames = 0
        while 1:
            if just_log:
                printerr([ bit_gen.next(), bit_gen.next(),bit_gen.next(),bit_gen.next(),bit_gen.next(),bit_gen.next(),bit_gen.next(),bit_gen.next(),bit_gen.next(),bit_gen.next(),bit_gen.next(),bit_gen.next(),bit_gen.next(),bit_gen.next()])
            else:
                run_until_start_code(bit_gen)
                consume_merging_bites(bit_gen)
                frames += 1
                frame_bytes.append(list(consume_f3_frame(bit_gen)))  # 31 14 bit EFM codes in a frame
                if len(frame_bytes) == EFM_FRAME_LENGTH:
                    f2frame = consume_f2_frame(frame_bytes)
                    data_frames.append(consume_f1_frame(f2frame))
                    frame_bytes = []
                    #
    except StopIteration:
        printerr('Hit the end of the bitstream')
        printerr('Found %d frames ' % frames)
        printerr(' Expected %.2f frames' % ((SAMPLES / 6.626 ) / 588 ))
    ## Output data should now contain all the decoded frames
    audioleft, audioright = extract_audio_samples(data_frames)
    data = np.clip(data, 0, 255).astype(np.uint8)
    sys.stdout.write(data.tostring())
Ejemplo n.º 12
0
def cheby2_lowpass_filter(_data, _frequency_cutoff, _carrier_frequency, order):
    """

    :param _data: The data to be lowpassed
    :param _frequency_cutoff: The frequency cutoff for the filter
    :param _carrier_frequency: The carrier frequency for the filter
    :param order: The order of the filter
    :return: The output of the lowpass filter (entire window)
    """
    nyq = 0.5 * _carrier_frequency
    low = _frequency_cutoff / nyq
    b, a = signal.cheby2(order, 5, low, 'low', analog=False, output='ba')
    return signal.lfilter(b, a, _data)
Ejemplo n.º 13
0
def cheby2_highpass_test():
  import numpy as np
  from numpy.testing import assert_almost_equal
  
  from scipy.signal import cheby2

  x = np.arange(10000).reshape(1, -1)
  d = np.sin(x * 2 * np.pi * 1000 / 48000)
  
  out, b, a = filter_high(d)
  
  bref, aref = cheby2(5, 3, 1000/24000., btype='highpass')
  
  assert_almost_equal(-b, bref)
  assert_almost_equal(np.hstack(([1], -a[::-1])), aref)
Ejemplo n.º 14
0
def _NOTCH_Cheby2_bandstop(interval, sampling_rate, cutoff, order=5):

    nyq = sampling_rate * 0.5

    stopfreq = float(cutoff) + 300.0
    cornerfreq = float(cutoff) - 300.0
    Ws = stopfreq / nyq
    Wp = cornerfreq / nyq
    # N, Wn = cheb2ord(Wp, Ws, 3, 60)   # (?)

    N, Wn = cheb2ord([0.3, 0.5], [0.45, 0.48], 3, 160)  # (?)
    # print N, Wn, Wp, Ws, stopfreq, cornerfreq

    b, a = cheby2(N, 60, Wn, btype="stop")  # should 'high' be here for bandpass?
    sf = lfilter(b, a, interval)
    return sf, b, a
Ejemplo n.º 15
0
def iir_basic(a):
  
        filt_type = a["Response Type"]
        
        print('filt_type', filt_type)
        design_method = a["Design_Methode"]
        if design_method == 'Elliptic':
            ftype = 'ellip'
        elif design_method == 'Chebychev 1':
            ftype = 'cheby1'
        elif design_method == 'Chebychev 2':
            ftype = 'cheby2'
        elif design_method == 'Butterworth':
            ftype = 'butter'
#        else: raise_exception
            
        print('design_method', design_method)
        N = a['Order']
        print('order',N)
        fs = a["Fs"]
        F_pass = 2 * a["Fpass"]/fs
#        F_stop = 2 * a[3][2][2]/fs
        F_stop = 0.8
        print('fs','fpass','fstop',fs, F_pass, F_stop)
        A_pass = a["Apass"]
        A_stop = a["Astop"]
#        A_stop = a[4][2][2]
        print('A_pass', 'A_stop', A_pass, A_stop)
#        W = a[5]
#        print('W',W)
        
        if N == 'min':
            b,a = sig.iirdesign(F_pass, F_stop, A_pass, A_stop, analog = False, 
                                ftype = ftype, output = 'ba')            
        else:
            if ftype == 'ellip':
                b,a = sig.ellip(N, A_pass, A_stop, [F_pass, F_stop], btype ='low' )
            elif ftype == 'cheby1':
                b,a = sig.cheby1(N, A_pass, [F_pass, F_stop], btype ='low' )
            elif ftype == 'cheby2':
                b,a = sig.cheby2(N, A_stop, [F_pass, F_stop], btype ='low' )
            elif ftype == 'butter':
                b,a = sig.butter(N, (2 * a["Fc"]/fs), btype ='low' )
        return b, a
Ejemplo n.º 16
0
 def design(self, ripple=None):
     if self.filter_class == 'butterworth':
         self.B, self.A = signal.butter(self.N, self.Wn,
                                        self.filter_type, analog=True,
                                        output='ba')
     elif self.filter_class == 'chebyshev_1':
         if ripple is None or ripple <= 0:
             raise ValueError("Must give a ripple that is > 0")
         self.B, self.A = signal.cheby1(self.N, ripple, self.Wn,
                                        self.filter_type, analog=True,
                                        output='ba')
     elif self.filter_class == 'chebyshev_2':
         self.B, self.A = signal.cheby2(self.N, self.stopband_attenuation, self.Wn,
                                        self.filter_type, analog=True, output='ba')
     elif self.filter_class == 'elliptical':
         self.B, self.A = signal.ellip(self.N, self.passband_attenuation,
                                       self.stopband_attenuation, self.Wn,
                                       self.filter_type, analog=True, output='ba')
     elif self.filter_class == 'bessel':
         self.B, self.A = signal.bessel(self.N, self.Wn, self.filter_type, analog=True)
     else:
         raise NotImplementedError("Computation of {} not implemented yet.".format(self.filter_class))
Ejemplo n.º 17
0
 def montage(self, name, type='linkedears', filtr='high', start=None, stop=None, mixed=False):
     if filtr:
         [b,a] = butter(3,1.0/(self.samplingFrequency()/2.0), btype='high')
     if filtr == 'alpha':
         Wn = [8.5/(128/2.0),14.5/(128/2.0)]
         [g,h] = cheby2(4, 20, Wn, btype='bandpass', analog=0, output='ba')
     if type == 'linkedears':
         s = self.channel(name, 'name')
         #s = filtfilt(b,a,s - (self.channel('A1', 'name') + self.channel('A2', 'name'))/2)
         if start and stop: 
             t = filtfilt(b,a,s[start:stop] - (self.channel('A1', 'name')[start:stop] + self.channel('A2', 'name')[start:stop])/2)
             if filtr == 'alpha': t = filtfilt(g,h,t)
         elif stop:
             t = filtfilt(b,a,s[:stop] - (self.channel('A1', 'name')[:stop] + self.channel('A2', 'name')[:stop])/2)
             if filtr == 'alpha': t = filtfilt(g,h,t)
         elif start:
             t = filtfilt(b,a,s[start:] - (self.channel('A1', 'name')[start:] + self.channel('A2', 'name')[start:])/2)
         else:
             t = filtfilt(b,a,s - (self.channel('A1', 'name') + self.channel('A2', 'name'))/2)
             if filtr == 'alpha': t = filtfilt(g,h,t)
         if mixed: t = self.mixer(t)
     return t
Ejemplo n.º 18
0
	def __init__(self, filter_type, filter_order, filter_freq,
			filter_direction, filter_atten=0):
		"""Return a FilterTools object of type *filter_type* as 0 == cheby2 or
		1 == butter of order *filter_order* with minimum attenuation
		*filter_atten* (for cheby2). *filter_freq* is the normalized cutoff
		frequency 2*fc/fs and *filter_direction* a string determining 'high'
		or 'low' pass behavior.
		"""
		# Handle exceptions
		# http://stackoverflow.com/questions/2525845/proper-way-
		#	in-python-to-raise-errors-while-setting-variables

		if(filter_type==0):
			self.b, self.a = sig.cheby2(filter_order, filter_atten,
					filter_freq, filter_direction, analog=False,
					output='ba')
		elif(filter_type==1):
			self.b, self.a = sig.butter(filter_order, filter_freq,
					filter_direction, analog=False,
					output='ba')

		self.filter_order = filter_order
Ejemplo n.º 19
0
  def __init__(self, outputConfig, frequency_hz, bw_hz=1e6):
    '''
    Initialize filter object.

    Parameters
    ----------
    outputConfig : object
      Output configuration parameters object
    frequency_hz : float
      Intermediate frequency in hertz
    bw_hz : float, optional
      Noise bandwidth in hertz
    '''
    super(BandPassFilter, self).__init__(3., 40.)

    self.bw_hz = bw_hz
    self.frequency_hz = frequency_hz
    passBand_hz = bw_hz
    stopBand_hz = bw_hz * 1.2
    mult = 2. / outputConfig.SAMPLE_RATE_HZ
    order, wn = cheb2ord(wp=[(frequency_hz - passBand_hz) * mult,
                             (frequency_hz + passBand_hz) * mult],
                         ws=[(frequency_hz - stopBand_hz) * mult,
                             (frequency_hz + stopBand_hz) * mult],
                         gpass=self.passBandAtt_dbhz,
                         gstop=self.stopBandAtt_dbhz,
                         analog=False)

    b, a = cheby2(order + 1,  # Order of the filter
                  # Minimum attenuation required in the stop band in dB
                  self.stopBandAtt_dbhz,
                  wn,
                  btype="bandpass",
                  analog=False,
                  output='ba')

    self.a = a
    self.b = b
    self.zi = lfiltic(self.b, self.a, [])
Ejemplo n.º 20
0
    def __init__(self, outputConfig, frequency_hz=0.0):
        """
    Initialize filter object.

    Parameters
    ----------
    outputConfig : object
      Output configuration parameters object
    frequency_hz : float
      Intermediate frequency
    """
        super(LowPassFilter, self).__init__(3.0, 40.0)

        self.bw_hz = 1e6
        passBand_hz = frequency_hz + self.bw_hz
        stopBand_hz = frequency_hz + self.bw_hz * 1.2

        nyqFreq_s = 2.0 / outputConfig.SAMPLE_RATE_HZ  # 1.0 /Nyquist frequency
        wp = passBand_hz * nyqFreq_s
        ws = stopBand_hz * nyqFreq_s

        order, wn = cheb2ord(wp=wp, ws=ws, gpass=self.passBandAtt_dbhz, gstop=self.stopBandAtt_dbhz, analog=False)
        self.order = order
        self.wn = wn

        b, a = cheby2(
            order + 1,  # Order of the filter
            # Minimum attenuation required in the stop band in dB
            self.stopBandAtt_dbhz,
            wn,
            btype="lowpass",
            analog=False,
            output="ba",
        )

        self.a = a
        self.b = b
        self.zi = lfiltic(self.b, self.a, [])
Ejemplo n.º 21
0
def beam_profile_filter_chebyshev(n_macroparticles, resolution, n_slices,
                                  filter_option):
    '''
    *This routine is filtering the beam profile with a type II Chebyshev
    filter. The input is a library having the following structure and
    informations:*

    filter_option = {'type':'chebyshev', 'pass_frequency':pass_frequency,
                     'stop_frequency':stop_frequency,'gain_pass':gain_pass,
                     'gain_stop':gain_stop}

    *The function returns nCoefficients, the number of coefficients used
    in the filter. You can also add the following option to plot and return
    the filter transfer function:*

    filter_option = {..., 'transfer_function_plot':True}
    '''
    import matplotlib as mpl
    mpl.use('Agg')
    import matplotlib.pyplot as plt
    # import os
    from scipy.signal import cheb2ord, cheby2, filtfilt, freqz
    from numpy.fft import fftfreq, fft

    noisyProfile = np.array(n_macroparticles, dtype=float)

    freqSampling = 1 / resolution
    nyqFreq = freqSampling / 2.

    frequencyPass = float(filter_option['pass_frequency']) / nyqFreq
    frequencyStop = float(filter_option['stop_frequency']) / nyqFreq
    gainPass = float(filter_option['gain_pass'])
    gainStop = float(filter_option['gain_stop'])
    # Compute the lowest order for a Chebyshev Type II digital filter
    nCoefficients, wn = cheb2ord(frequencyPass, frequencyStop, gainPass,
                                 gainStop)
    # Compute the coefficients a Chebyshev Type II digital filter
    b, a = cheby2(nCoefficients, gainStop, wn, btype='low')

    # NOTE 2 lines of code have been commented out!!
    # Apply the filter forward and backwards to cancel the group delay
    # macroparticles = filtfilt(b, a, noisyProfile)
    # macroparticles = np.ascontiguousarray(macroparticles)
    # print "n_macroparticles: ", macroparticles

    if 'transfer_function_plot' in filter_option and \
            filter_option['transfer_function_plot'].lower() == "true":
        # Plot the filter transfer function
        w, transferGain = freqz(b, a=a, worN=n_slices)
        transferFreq = w / np.pi * nyqFreq
        group_delay = - \
            np.diff(-np.unwrap(-np.angle(transferGain))) / - \
            np.diff(w*freqSampling)

        plt.figure()
        ax1 = plt.subplot(311)
        plt.plot(transferFreq, 20 * np.log10(abs(transferGain)))
        plt.ylabel('Magnitude [dB]')
        plt.subplot(312, sharex=ax1)
        plt.plot(transferFreq, np.unwrap(-np.angle(transferGain)))
        plt.ylabel('Phase [rad]')
        plt.subplot(313, sharex=ax1)
        plt.plot(transferFreq[:-1], group_delay)
        plt.ylabel('Group delay [s]')
        plt.xlabel('Frequency [Hz]')

        plt.savefig("filter_transfer_function.png")
        plt.clf()

        # Plot the bunch spectrum and the filter transfer function
        plt.figure()

        plt.plot(np.fft.fftfreq(n_slices, resolution),
                 20 * np.log10(np.abs(np.fft.fft(noisyProfile))))
        plt.xlabel('Frequency [Hz]')
        plt.twinx()
        plt.plot(transferFreq, 20 * np.log10(abs(transferGain)), 'r')
        plt.xlim(0, plt.xlim()[1])

        plt.savefig("bunch_spectrum_filter_tranfer_function.png")
        plt.clf()

        res = np.array([nCoefficients], dtype=float)
        res = np.append(res,
                        [transferFreq, transferGain.real, transferGain.imag])
        # print n_slices
        # print res.shape
        return res
    else:
        # print "I am about to return"
        res = np.array([nCoefficients], dtype=float)
        res = np.append(res, [b, a])
        # print res
        return res
Ejemplo n.º 22
0
 def test_cheby2_7(self):
     # Test case for analog filter
     IIR = IIRDesign.cheby2(self.n, self.Rs, self.Wss, zs='s')
     iir = signal.cheby2(self.n, self.Rs, self.Wss, analog=True)
     self.assertTrue((IIR[0] == iir[0]).all() and (IIR[1] == iir[1]).all())
Ejemplo n.º 23
0
from h5py import File
from os import listdir
import numpy as np
import scipy.signal as ss


dataPath = './Data/'
newPath = './Data.npz/'
h5Files = listdir(dataPath)
fs = 500
fl = 4
fh = 36
ext = .9
eps = 1e-5
N, Wn = ss.cheb2ord([fl*2/fs, fh*2/fs], [fl*ext*2/fs, fh/ext*2/fs], 3, 20)
b, a = ss.cheby2(N, 40, Wn, 'bandpass')
downSample = 5
fsamples = 9
W = 9
padded = fs+4
c = np.log(np.linspace(fl+1, fh, fh-fl)/np.linspace(fl, fh-1, fh-fl)) \
    /np.log(fh/fl)*fsamples
w = np.zeros((fsamples, fh-fl))
w[0, 0] = c[0]
row = 0
for i in range(1, len(c)-1):
    if np.sum(c[:i+1]) > row+1:
        row += 1
        w[row-1, i] = row-np.sum(c[:i])
        w[row, i] = np.sum(c[:i+1])-row
    else:
Ejemplo n.º 24
0
def get_filter(ftype='FIR',
               band='lowpass',
               order=None,
               frequency=None,
               sampling_rate=1000.,
               **kwargs):
    """Compute digital (FIR or IIR) filter coefficients with the given
    parameters.

    Parameters
    ----------
    ftype : str
        Filter type:
            * Finite Impulse Response filter ('FIR');
            * Butterworth filter ('butter');
            * Chebyshev filters ('cheby1', 'cheby2');
            * Elliptic filter ('ellip');
            * Bessel filter ('bessel').
    band : str
        Band type:
            * Low-pass filter ('lowpass');
            * High-pass filter ('highpass');
            * Band-pass filter ('bandpass');
            * Band-stop filter ('bandstop').
    order : int
        Order of the filter.
    frequency : int, float, list, array
        Cutoff frequencies; format depends on type of band:
            * 'lowpass' or 'bandpass': single frequency;
            * 'bandpass' or 'bandstop': pair of frequencies.
    sampling_rate : int, float, optional
        Sampling frequency (Hz).
    ``**kwargs`` : dict, optional
        Additional keyword arguments are passed to the underlying
        scipy.signal function.

    Returns
    -------
    b : array
        Numerator coefficients.
    a : array
        Denominator coefficients.

    See Also:
        scipy.signal

    """

    # check inputs
    if order is None:
        raise TypeError("Please specify the filter order.")
    if frequency is None:
        raise TypeError("Please specify the cutoff frequency.")
    if band not in ['lowpass', 'highpass', 'bandpass', 'bandstop']:
        raise ValueError(
            "Unknown filter type '%r'; choose 'lowpass', 'highpass', \
            'bandpass', or 'bandstop'." % band)

    # convert frequencies
    frequency = _norm_freq(frequency, sampling_rate)

    # get coeffs
    b, a = [], []
    if ftype == 'FIR':
        # FIR filter
        if order % 2 == 0:
            order += 1
        a = np.array([1])
        if band in ['lowpass', 'bandstop']:
            b = ss.firwin(numtaps=order,
                          cutoff=frequency,
                          pass_zero=True,
                          **kwargs)
        elif band in ['highpass', 'bandpass']:
            b = ss.firwin(numtaps=order,
                          cutoff=frequency,
                          pass_zero=False,
                          **kwargs)
    elif ftype == 'butter':
        # Butterworth filter
        b, a = ss.butter(N=order,
                         Wn=frequency,
                         btype=band,
                         analog=False,
                         output='ba',
                         **kwargs)
    elif ftype == 'cheby1':
        # Chebyshev type I filter
        b, a = ss.cheby1(N=order,
                         Wn=frequency,
                         btype=band,
                         analog=False,
                         output='ba',
                         **kwargs)
    elif ftype == 'cheby2':
        # chevyshev type II filter
        b, a = ss.cheby2(N=order,
                         Wn=frequency,
                         btype=band,
                         analog=False,
                         output='ba',
                         **kwargs)
    elif ftype == 'ellip':
        # Elliptic filter
        b, a = ss.ellip(N=order,
                        Wn=frequency,
                        btype=band,
                        analog=False,
                        output='ba',
                        **kwargs)
    elif ftype == 'bessel':
        # Bessel filter
        b, a = ss.bessel(N=order,
                         Wn=frequency,
                         btype=band,
                         analog=False,
                         output='ba',
                         **kwargs)

    return utils.ReturnTuple((b, a), ('b', 'a'))
Ejemplo n.º 25
0
 def LPman(self, fil_dict):
     self._get_params(fil_dict)
     if not self._test_N():
         return -1
     self._save(fil_dict, sig.cheby2(self.N, self.A_SB, self.F_C,
                          btype='low', analog=self.analog, output=self.FRMT))
Ejemplo n.º 26
0
plt.ylim([-60, 12])
plt.ylabel('Amplitude [dB]')
plt.grid(which='both', axis='both')
plt.axvline(omega_c * np.pi, color='black')  # cutoff frequency
plt.legend()
plt.savefig('ChebyshevT1.png')

# ---------- chebyshev 2 ----------
bArray = []
aArray = []
wArray = []
hArray = []
orderArray = [1, 2, 4, 5]
omega_c = 0.25
for i in orderArray:
    b, a = signal.cheby2(N=i, rs=54, Wn=omega_c)
    if i == 4:
        filterSystems.append([b, a])
    w, h = signal.freqz(b, a)
    bArray.append(b)
    aArray.append(a)
    wArray.append(w)
    hArray.append(h)

fig = plt.figure(figsize=(16, 9))
for index in range(len(orderArray)):
    plt.plot(wArray[index],
             20 * np.log10(abs(hArray[index])),
             label="order = " + str(orderArray[index]))
plt.title('Chebyshev Type 2 Filter Frequency Response: Comparison')
plt.xlabel('Frequency [up to Nyquist]')
Ejemplo n.º 27
0
Ws = fs / fn

# ローパスフィルタで波形整形
# バターワースフィルタ
N, Wn = signal.buttord(Wp, Ws, gpass, gstop)
b1, a1 = signal.butter(N, Wn, "low")
y1 = signal.filtfilt(b1, a1, y)

# 第一種チェビシェフフィルタ
N, Wn = signal.cheb1ord(Wp, Ws, gpass, gstop)
b2, a2 = signal.cheby1(N, gpass, Wn, "low")
y2 = signal.filtfilt(b2, a2, y)

# 第二種チェビシェフフィルタ
N, Wn = signal.cheb2ord(Wp, Ws, gpass, gstop)
b3, a3 = signal.cheby2(N, gstop, Wn, "low")
y3 = signal.filtfilt(b3, a3, y)

# 楕円フィルタ
N, Wn = signal.ellipord(Wp, Ws, gpass, gstop)
b4, a4 = signal.ellip(N, gpass, gstop, Wn, "low")
y4 = signal.filtfilt(b4, a4, y)

# ベッセルフィルタ
N = 4
b5, a5 = signal.bessel(N, Ws, "low")
y5 = signal.filtfilt(b5, a5, y)

# FIR フィルタ
a6 = 1
numtaps = n
Ejemplo n.º 28
0
"""
Created on Sat Apr 13 12:14:28 2019

@author: ivanpauno
"""

import scipy.signal as sig
import matplotlib.pyplot as plt
import filter_utils

# Comparación orden 3, att max 3dB
num, den = sig.butter(3, 1, analog=True)  # n, wp
butter = sig.TransferFunction(num, den)
num, den = sig.cheby1(3, 3, 1, analog=True)  # n, att max, wp
cheby1 = sig.TransferFunction(num, den)
num, den = sig.cheby2(3, 20, 1.539389818149637, analog=True)  # n, att min, ws
cheby2 = sig.TransferFunction(num, den)
num, den = sig.bessel(3, 1, analog=True, norm='mag')  # n, wp
bessel = sig.TransferFunction(num, den)
num, den = sig.ellip(3, 3, 20, 1, analog=True)  # n, att max, att min, wp
ellip = sig.TransferFunction(num, den)

print('Transferencia Butterworth:\n')
filter_utils.pretty(butter.num, butter.den)
print('\n\n')
filter_utils.print_zpk(butter.num, butter.den)
print('\n\nTransferencia Chebyshev tipo 1:\n')
filter_utils.pretty(cheby1.num, cheby1.den)
print('\n\n')
filter_utils.print_zpk(cheby1.num, cheby1.den)
print('\n\nTransferencia Chebyshev tipo 2:\n')
Ejemplo n.º 29
0
def transform_signal(dat, s_freq, method, method_opt=None):
    """Transform the data using different methods.

    Parameters
    ----------
    dat : ndarray (dtype='float')
        vector with all the data for one channel
    s_freq : float
        sampling frequency
    method : str
        one of 'cheby2', 'butter', 'morlet', 'morlet_real', 'hilbert', 'abs',
        'moving_avg', 'gaussian'
    method_opt : dict
        depends on methods

    Returns
    -------
    ndarray (dtype='float')
        vector with all the data for one channel

    Notes
    -----
    Wavelets pass only absolute values already, it does not make sense to store
    the complex values.

    Methods
    -------
    cheby2 has parameters:
        freq : tuple of float
            high and low values for bandpass
        order : int
            filter order

    butter has parameters:
        freq : tuple of float
            high and low values for bandpass
        order : int
            filter order

    morlet has parameters:
        f0 : float
            center frequency in Hz
        sd : float
            standard deviation of frequency
        dur : float
            window length in number of standard deviations

    morlet_real has parameters:
        freqs : ndarray
            vector of wavelet frequencies for spindle detection
        dur : float
            duration of the wavelet (sec)
        width : float
            wavelet width
        win : float
            moving average window length (sec) of wavelet convolution

    moving_avg has parameters:
        dur : float
            duration of the window (sec)

    moving_rms has parameters:
        dur : float
            duration of the window (sec)

    gaussian has parameters:
        dur : float
            standard deviation of the Gaussian kernel, aka sigma (sec)
    """
    if 'cheby2' == method:
        freq = method_opt['freq']
        N = method_opt['order']

        Rs = 80
        nyquist = s_freq / 2
        Wn = asarray(freq) / nyquist
        b, a = cheby2(N, Rs, Wn, btype='bandpass')
        dat = filtfilt(b, a, dat)

    if 'butter' == method:
        freq = method_opt['freq']
        N = method_opt['order']

        nyquist = s_freq / 2
        Wn = asarray(freq) / nyquist
        b, a = butter(N, Wn, btype='bandpass')
        # print('butter: a=' + str(a) + ' b=' + str(b) + ' Wn=' + str(Wn) + ' N=' + str(N) + ' freq: ' + str(freq))
        dat = filtfilt(b, a, dat)

    if 'morlet' == method:
        f0 = method_opt['f0']
        sd = method_opt['sd']
        dur = method_opt['dur']

        wm = _wmorlet(f0, sd, s_freq, dur)
        dat = absolute(fftconvolve(dat, wm, mode='same'))

    if 'wavelet_real' == method:
        freqs = method_opt['freqs']
        dur = method_opt['dur']
        width = method_opt['width']
        win = int(method_opt['win'] * s_freq)

        wm = _realwavelets(s_freq, freqs, dur, width)
        tfr = empty((dat.shape[0], wm.shape[0]))
        for i, one_wm in enumerate(wm):
            x = abs(fftconvolve(dat, one_wm, mode='same'))
            tfr[:, i] = fftconvolve(x, tukey(win), mode='same')
        dat = mean(tfr, axis=1)

    if 'hilbert' == method:
        dat = hilbert(dat)

    if 'abs' == method:
        dat = absolute(dat)

    if 'moving_avg' == method:
        dur = method_opt['dur']

        flat = ones(int(dur * s_freq))
        dat = fftconvolve(dat, flat / sum(flat), mode='same')

    if 'moving_rms' == method:
        dur = method_opt['dur']
        halfdur = int(floor(s_freq * dur / 2))
        ldat = len(dat)
        rms = zeros((ldat))

        for i in range(ldat):
            rms[i] = sqrt(
                mean(square(dat[max(0, i - halfdur):min(ldat, i + halfdur)])))
        dat = rms

    if 'gaussian' == method:
        sigma = method_opt['dur']

        dat = gaussian_filter(dat, sigma)

    return dat
Ejemplo n.º 30
0
        print('Server Listening: {}'.format(server.server_address))
        # reader in threading
        reader_thread = threading.Thread(target=reader)
        reader_thread.start()
        # normal blocking server
        shutdownEvent.wait(300)
        q.join()
        server.shutdown()
        reader_thread.join()
        # after stop show plot

        ch1 = hampel(ch1_data, HAMPEL_WINDOW, 1)
        ch2 = hampel(ch2_data, HAMPEL_WINDOW, 1)

        #ch2 = kalman(ch2_data)
        sos = cheby2(20, 40, 45, 'lowpass', fs=250, output='sos')

        # sos1 = butter(20, 45, 'lowpass', fs=250, output='sos')
        # ch2b = sosfilt(sos1, ch2)
        ch1 = sosfilt(sos, ch1)
        ch2 = sosfilt(sos, ch2)
        '''
        ch3 = []
        aVR = []
        aVL = []
        aVF = []
        for i in range(len(ch1)):
            ch3.append(ch2[i] - ch1[i])
            aVR.append(-0.5*(ch1[i]+ch2[i]))
            aVL.append(ch1[i]-0.5*ch2[i])
            aVF.append(ch2[i]-0.5*ch1[i])        
Ejemplo n.º 31
0
 def test_cheby2_5(self):
     # Test case for bandpass filter without default
     IIR = IIRDesign.cheby2(self.n, self.Rs, self.Ws2, ftype='bandpass')
     iir = signal.cheby2(self.n, self.Rs, self.Ws2, btype='bandpass', fs=2)
     self.assertTrue((IIR[0] == iir[0]).all() and (IIR[1] == iir[1]).all())
Ejemplo n.º 32
0
    def __init__(self, _order, _cutoff, *args, **kwargs):
        '''
            Constructor to calculate the coefficients of the filter and set up various arrays/variables
            to be used in the filter
            
            Takes in:
                _order = the order of the filter to by created
                _cutoff = the cutoff frequency(s) of the filter normalised to sample rate
            
            Optional:
                filter_type = defines if the filter is lowpass/bandpass/highpass/bandstop
                analogue_filter = defines the type of analogue filter to be replicated
                cheby_ripple = defines the acceptable ripple in a chebyshev filter in dB
                direct_form = defines if a direct form 1 or 2 filter is to be used
                fixed_point = defines if a direct form 1 filter should be fixed point
            
        '''

        #Check the optional arguments
        filter_type = kwargs.get('filter_type', 'low')
        analogue_filter = kwargs.get('analogue_filter', 'butter')
        cheby_ripple = kwargs.get('cheby_ripple', 5)
        self.direct_form = kwargs.get('direct_form', 2)
        self.fixed_point = kwargs.get('fixed_point', False)

        #change the cutoffs to be normalised to Nyquist rather than sample rate
        _cutoff = 2 * _cutoff

        #select which type of analogue filter to replicate
        #output = 'sos' to give second order sections coefficients
        if analogue_filter == 'bessel':

            self.sos = signal.bessel(_order,
                                     _cutoff,
                                     btype=filter_type,
                                     analog=False,
                                     output='sos')

        elif analogue_filter == 'butter':

            self.sos = signal.butter(_order,
                                     _cutoff,
                                     btype=filter_type,
                                     analog=False,
                                     output='sos')

        elif analogue_filter == 'cheby1':

            self.sos = signal.cheby1(_order,
                                     cheby_ripple,
                                     _cutoff,
                                     btype=filter_type,
                                     analog=False,
                                     output='sos')

        elif analogue_filter == 'cheby2':

            self.sos = signal.cheby2(_order,
                                     cheby_ripple,
                                     _cutoff,
                                     btype=filter_type,
                                     analog=False,
                                     output='sos')

        #convert the coefficients to scaled integers if fixed point requested
        #only available for Direct Form 1
        self.fixed_scaling = 30
        if self.fixed_point == True and self.direct_form == 1:
            self.sos = self.sos * (2**self.fixed_scaling)
            self.sos = self.sos.astype(int)

        #define the number of second order sections required to implement that order of filter
        shape = np.shape(self.sos)
        self.sections = shape[0]

        #set up arrays to store the x and y values for each second order section for direct form 1
        self.x = np.zeros([(self.sections), 3])
        self.y = np.zeros([(self.sections), 3])

        #set up delays for direct form 2
        self.delay = np.zeros([self.sections, 2])
Ejemplo n.º 33
0
def getI32(file_name, numberOfSlices, numberOfAllRepitionsParTable):

    #fileSize = fileInfo.bytes/4
    fid = open(file_name)

    fileTable = np.fromfile(fid, dtype=np.float32)

    #fpRawTime	= fileTable[0:len(fileTable):4]
    fpRawResp = fileTable[1:len(fileTable):4]
    fpRawTrig = fileTable[2:len(fileTable):4]
    fpRawCard = fileTable[3:len(fileTable):4]

    # Process Respiration Data
    # Merge 10 Values
    N = 10
    RespBLC = np.convolve(fpRawResp, np.ones((N, )) / N, mode='same')

    # Evalute Baseline Shift
    RespBLC = RespBLC - np.median(RespBLC, axis=None)

    # derivative of respiration
    kernel = [1, 0, -1]
    RespDeriv = np.convolve(RespBLC, kernel, mode='same')
    #RespDeriv = np.gradient(RespBLC)
    # peak detection
    pksRespMax, pksResMin = pk.peakdet(RespBLC * 20, delta=1)
    print('avg. Respiration Rate: ' +
          str(len(pksRespMax) / (len(RespBLC) / 60000)) + ' 1/min')

    # Process Cardiac Data
    fs = 1000  # Sampling Frequency(1 kHz)
    lowcut = 2.5
    highcut = 10.0
    nyq = 0.5 * fs  # Nyquist Frequency (Hz)
    Wp = [lowcut / nyq,
          highcut / nyq]  # Passband Frequencies (Normalised 2.5 - 10 Hz)
    Ws = [0.1 / nyq, 35 / nyq]  # Stopband Frequencies (Normalised)
    Rs = 40  # Sroppband Ripple (dB)
    N = 3  # Filter order
    b, a = sc.cheby2(N, Rs, Ws, btype='bandpass')
    filtCardBLC = sc.filtfilt(b, a, fpRawCard)

    N = 10
    CardBLC = np.convolve(filtCardBLC, np.ones((N, )) / N, mode='same')

    # Evalute Baseline Shift
    CardBLC = CardBLC - np.median(CardBLC, axis=None)

    # derivative of respiration
    kernel = [1, 0, -1]
    CardDeriv = np.convolve(CardBLC, kernel, mode='same')

    # peak detection
    pksCardpMax, pksCardMin = pk.peakdet(CardBLC * 20, delta=1)
    print('avg. Card Rate: ' + str(len(pksCardpMax) / (len(CardBLC) / 60000)) +
          ' 1/min')

    # if the trigger max is not equal 1 but higher
    if max(fpRawTrig) != 1.0:
        fpRawTrig = fpRawTrig - (max(fpRawTrig) - 1)

    # find missing trigger and replace 1 by 0
    idx_missedTrigger = np.where(np.diff(fpRawTrig, 2) == 2)[0] + 1
    if len(idx_missedTrigger) > 0:
        fpRawTrig[idx_missedTrigger + 1] = 0

    triggerDataPoints = np.argwhere(fpRawTrig == 0)
    numberOfTiggers = len(triggerDataPoints)
    numberOfRepitions = numberOfTiggers / (numberOfSlices * 2)
    print('Number of Repetitions: ' + str(numberOfRepitions))

    # if two dataset in a single i32 file
    if numberOfTiggers >= (
        (numberOfAllRepitionsParTable + 5) * numberOfSlices * 2) * 2:
        triggerDataPoints = triggerDataPoints[:int(
            numberOfTiggers /
            2)]  # if more than two dataset in a single i32 file

    old_numberOfTriggers = numberOfTiggers
    # corrected number of triggers
    numberOfTiggers = len(triggerDataPoints)

    # if some wrong triggers in i32 file
    if numberOfTiggers > (numberOfAllRepitionsParTable +
                          5) * numberOfSlices * 2:
        wrongAmountOfTriggers = numberOfTiggers - (
            numberOfAllRepitionsParTable + 5) * numberOfSlices * 2
        fpRawTrig_cut = fpRawTrig[wrongAmountOfTriggers * 100 - 1::]
        triggerDataPoints = np.argwhere(fpRawTrig_cut == 0)
        numberOfTiggers = len(triggerDataPoints)
        numberOfRepitions = numberOfTiggers / (numberOfSlices * 2)
        print('Number of Repetitions: ' + str(numberOfRepitions))

    triggerDataPoints_1st = triggerDataPoints[numberOfSlices * 5 *
                                              2:numberOfTiggers:2, 0]
    triggerDataPoints_2nd = triggerDataPoints[numberOfSlices * 5 * 2 +
                                              1:numberOfTiggers:2, 0]
    usedTriggerAmount = (
        (numberOfAllRepitionsParTable + 5) * numberOfSlices * 2 -
        5 * 2 * numberOfSlices) / 2

    if not len(triggerDataPoints_1st) == len(triggerDataPoints_2nd):
        print('Miss one Trigger in file_name in %s', file_name)
        if len(triggerDataPoints_1st) < usedTriggerAmount:
            if len(triggerDataPoints_2nd) == usedTriggerAmount:
                triggerDataPoints_1st = triggerDataPoints_2nd
            else:
                sys.exit('Trigger does not relate to any slice or rep. Time')

    if len(RespBLC) == len(CardBLC):
        i32Table = np.zeros([len(RespBLC), 4])
    else:
        sys.exit('Respiration and Cardiac Data do not have the same length!')

    i32Table[:, 0] = RespBLC
    i32Table[:, 1] = RespDeriv
    i32Table[:, 2] = CardBLC
    i32Table[:, 3] = CardDeriv

    return triggerDataPoints_1st, i32Table
Ejemplo n.º 34
0
 def test_cheby2_3(self):
     # Test case for highpass filter
     IIR = IIRDesign.cheby2(self.n, self.Rs, self.Ws1, ftype='high')
     iir = signal.cheby2(self.n, self.Rs, self.Ws1, btype='highpass', fs=2)
     self.assertTrue((IIR[0] == iir[0]).all() and (IIR[1] == iir[1]).all())
Ejemplo n.º 35
0
from scipy import signal
import matplotlib.pyplot as plt
import numpy as np


b, a = signal.cheby2(4, 5, 100, 'low', analog=True)
w, h = signal.freqs(b, a)
plt.plot(w, 20 * np.log10(abs(h)))
plt.xscale('log')
plt.title('Chebyshev Type II frequency response (rp=5)')
plt.xlabel('Frequency [radians / second]')
plt.ylabel('Amplitude [dB]')
plt.margins(0, 0.1)
plt.grid(which='both', axis='both')
plt.axvline(100, color='green') # cutoff frequency
plt.axhline(-5, color='green') # rp
plt.show()
Ejemplo n.º 36
0
 def HPman(self, fil_dict):
     self.get_params(fil_dict)
     self.save(fil_dict, sig.cheby2(self.N, self.A_SB, self.F_C,
                     btype='highpass', analog = self.analog, output = frmt))
Ejemplo n.º 37
0
    def beam_profile_filter_chebyshev(self, filter_option):
        ''' 
        *This routine is filtering the beam profile with a type II Chebyshev
        filter. The input is a library having the following structure and
        informations:*
        
        filter_option = {'type':'chebyshev', 'pass_frequency':pass_frequency, 'stop_frequency':stop_frequency, 'gain_pass':gain_pass, 'gain_stop':gain_stop}
        
        *The function returns nCoefficients, the number of coefficients used 
        in the filter. You can also add the following option to plot and return
        the filter transfer function:*
        
        filter_option = {..., 'transfer_function_plot':True}
        '''

        noisyProfile = np.array(self.n_macroparticles)

        freqSampling = 1 / (self.bin_centers[1] - self.bin_centers[0])
        nyqFreq = freqSampling / 2.

        frequencyPass = filter_option['pass_frequency'] / nyqFreq
        frequencyStop = filter_option['stop_frequency'] / nyqFreq
        gainPass = filter_option['gain_pass']
        gainStop = filter_option['gain_stop']

        # Compute the lowest order for a Chebyshev Type II digital filter
        nCoefficients, wn = cheb2ord(frequencyPass, frequencyStop, gainPass,
                                     gainStop)

        # Compute the coefficients a Chebyshev Type II digital filter
        b, a = cheby2(nCoefficients, gainStop, wn, btype='low')

        # Apply the filter forward and backwards to cancel the group delay
        self.n_macroparticles = filtfilt(b, a, noisyProfile)
        self.n_macroparticles = np.ascontiguousarray(self.n_macroparticles)

        if 'transfer_function_plot' in filter_option and filter_option[
                'transfer_function_plot'] == True:
            # Plot the filter transfer function
            w, transferGain = freqz(b, a=a, worN=self.n_slices)
            transferFreq = w / np.pi * nyqFreq
            group_delay = -np.diff(-np.unwrap(-np.angle(transferGain))
                                   ) / -np.diff(w * freqSampling)

            plt.figure()
            ax1 = plt.subplot(311)
            plt.plot(transferFreq, 20 * np.log10(abs(transferGain)))
            plt.ylabel('Magnitude [dB]')
            plt.subplot(312, sharex=ax1)
            plt.plot(transferFreq, np.unwrap(-np.angle(transferGain)))
            plt.ylabel('Phase [rad]')
            plt.subplot(313, sharex=ax1)
            plt.plot(transferFreq[:-1], group_delay)
            plt.ylabel('Group delay [s]')
            plt.xlabel('Frequency [Hz]')

            ## Plot the bunch spectrum and the filter transfer function
            plt.figure()
            plt.plot(
                np.fft.fftfreq(self.n_slices,
                               self.bin_centers[1] - self.bin_centers[0]),
                20. * np.log10(np.abs(np.fft.fft(noisyProfile))))
            plt.xlabel('Frequency [Hz]')
            plt.twinx()
            plt.plot(transferFreq, 20 * np.log10(abs(transferGain)), 'r')
            plt.xlim(0, plt.xlim()[1])

            plt.show()

            return nCoefficients, [transferFreq, transferGain]

        else:
            return nCoefficients, b, a
Ejemplo n.º 38
0
 def BSman(self, fil_dict):
     self.get_params(fil_dict)
     self.save(fil_dict, sig.cheby2(self.N, self.A_SB, [self.F_C, self.F_C2],
                     btype='bandstop', analog = self.analog, output = frmt))
Ejemplo n.º 39
0
a_ft[imsize[0]//2-1, 0] = 1  # aliasing
a_ft[imsize[0]//2+1, 0] = 1  # aliasing
a_ft[imsize[0]-2, 0] = 1  # no aliasing
a_ft[2,           0] = 1  # no aliasing

a = np.fft.ifftn(a_ft)
if np.max(np.imag(a)) < 1e-5 * np.max(np.real(a)):
    a = np.real(a)
else:
    print('max imaginary part of a is ', np.max(np.imag(a)))

a_subsam1 = a[::subsam_factor,:]
#a_subsam2 = signal.decimate(a, 2, axis=0)

#num, den = signal.cheby1(4, 1, 0.2, 'low')
num, den = signal.cheby2(4, 25, 0.27, 'low')
#num, den = signal.butter(4, 0.16, 'low')
w, h = signal.freqz(num, den, imsize[0])
#w1, h1 = signal.freqz(num1, den1, imsize[0])
#a_filtered = signal.filtfilt(num, den, a, axis=0)
#a_subsam2 = a_filtered[::subsam_factor,:]
a_subsam2 = signal.decimate(a, subsam_factor, axis=0, ftype=signal.dlti(num, den))
#print(np.max(a_subsam2 - a_subsam3))  # 0.0
print(np.mean(a))
print(np.mean(a_subsam1))
print(np.mean(a_subsam2))
print()
print(np.max(a))
print(np.max(a_subsam1))
print(np.max(a_subsam2))
print()
Ejemplo n.º 40
0
 def test_cheby2_1(self):
     # Test case for lowpass filter with default
     IIR = IIRDesign.cheby2(self.n, self.Rs, self.Ws1)
     iir = signal.cheby2(self.n, self.Rs, self.Ws1, fs=2)
     self.assertTrue((IIR[0] == iir[0]).all() and (IIR[1] == iir[1]).all())
Ejemplo n.º 41
0
 def BSman(self, fil_dict):
     self._get_params(fil_dict)
     if not self._test_N():
         return -1
     self._save(fil_dict, sig.cheby2(self.N, self.A_SB, [self.F_C, self.F_C2],
                     btype='bandstop', analog=self.analog, output=self.FRMT))
Ejemplo n.º 42
0
def lowpass_cheby_2(data,
                    freq,
                    df,
                    maxorder=12,
                    ba=False,
                    freq_passband=False):
    """
    Cheby2-Lowpass Filter

    Filter data by passing data only below a certain frequency.
    The main purpose of this cheby2 filter is downsampling.
    This method will iteratively design a filter, whose pass
    band frequency is determined dynamically, such that the
    values above the stop band frequency are lower than -96dB.

    Parameters
    ----------
    data : array
        Data to filter.

    freq : float 
        The frequency above which signals are attenuated with 95 dB.
    
    df : float
        Sampling rate in Hz.

    maxorder : int
        Maximal order of the designed cheby2 filter.
        **Default:** ``12``

    ba : bool
        If True return only the filter coefficients (b, a) instead of filtering.
        **Default:** ``False``

    freq_passband : bool
        If True return additionally to the filtered data, the iteratively determined pass band frequency.
        **Default:** ``False``

    
    Returns
    -------
    data : array
        Filtered data.
    
    """

    nyquist = df * 0.5
    # rp - maximum ripple of passband, rs - attenuation of stopband
    rp, rs, order = 1, 96, 1e99
    ws = freq / nyquist  # stop band frequency
    wp = ws  # pass band frequency
    # raise for some bad scenarios
    if ws > 1:
        ws = 1.0
        msg = "Selected corner frequency is above Nyquist. " + \
              "Setting Nyquist as high corner."
        warnings.warn(msg)
    while True:
        if order <= maxorder:
            break
        wp = wp * 0.99
        order, wn = cheb2ord(wp, ws, rp, rs, analog=0)
    if ba:
        return cheby2(order, rs, wn, btype='low', analog=0, output='ba')
    z, p, k = cheby2(order, rs, wn, btype='low', analog=0, output='zpk')
    sos = zpk2sos(z, p, k)
    if freq_passband:
        return sosfilt(sos, data), wp * nyquist
    return sosfilt(sos, data)
Ejemplo n.º 43
0
def cheby2_bandpass(lowcut, highcut, fs, order=5):
    nyq = 0.5 * fs
    low = lowcut / nyq
    high = highcut / nyq
    b, a = cheby2(order, 60, [low, high], btype='bandpass')
    return b, a
Ejemplo n.º 44
0
#from nnmnkwii.baseline.gmm import MLPG
from nnmnkwii.paramgen import mlpg
from Utils_GMM import GMM_M
from KalmanSmoother import *
from scipy.signal import butter, filtfilt
from scipy import signal
from nnmnkwii.util import trim_zeros_frames, remove_zeros_frames


from keras.backend.tensorflow_backend import set_session  
config = tf.ConfigProto()  
config.gpu_options.allow_growth = True  
set_session(tf.Session(config=config)) 

# In[10]:
fb, fa = signal.cheby2(10,40,7.0/(100/2),'low', analog=False)#, 'low', analog=True)#(4, 5, 100, 'low', analog=True)


NoUnits=128#256 #LSTM units
BatchSize=5 #50
NoEpoch=50
htkfile = HTK.HTKFile()
std_frac=0.25
n_mfcc=13
inputDim=n_mfcc*3
OutDim=128

# In[11]:


def Get_Wav_EMA_PerFile(EMA_file,Wav_file,F):
Ejemplo n.º 45
0
    def start_CSP(self, signal_time, to_frequency = 128, baseline = True,\
            base_time = 4, filt = 'ellip', method = 'pfu', train_tags = None):
        """Produces CSP filter from the data.

        THIS VERSION CALCULATES ONE FILTER FOR ALL FREQUENCIES
        The filter is stored in a variable P

        Parameters:
        -----------
        signal_time : float
            Time in seconds of signal to take as a class for maximalization   
        to_frequency [= 128Hz] : int
            The frequency to which signal will be resampled
        baseline [= True] : bool
            If true a base line of base_time seconds will be taken as a class for minimalization
        [If baseline = True]
        base_time [= 4] : float
            Time in seconds of baseline to take as minimalization class
        filt [= 'ellip']: string ['ellip', 'cov', 'cheby', None]
            a filter to use. If method is 'maxcontrast' the variable is set to None
        method [= 'pfu'] : string ['pfu', 'regular','maxcontrast']
            method of calculation CSP filter
        train_tags : list
            a list of tags to process. Each list entry is a tuple with first element position of tag in seconds, and second is a frequency of stimulation
        """

        if not self.__is_int(to_frequency):
            raise ValueError, 'to_frequency is not int!'
        self.method = method
        signal = self.parsed_data.prep_signal(
            to_frequency,
            self.electrodes,
            montage=self.montage,
            montage_channels=self.montage_channels)
        if train_tags == None:
            all_tags = self.parsed_data.get_train_tags(ccof=True)
        else:
            all_tags = train_tags
        N = len(self.electrodes)
        if method == 'maxcontrast' or method == 'minimalentropy':
            baseline = True
            filt = None
        cov_pre = np.zeros([N, N])
        cov_post = np.zeros([N, N])
        pre_i = 0
        post_i = 0
        for i, frq in enumerate(self.frequencies):
            if filt == 'ellip':
                filt_b, filt_a = ellip(3, 0.1 , 100, \
                [2*(frq - 1) / float(to_frequency), 2*(frq + 1) / float(to_frequency)],\
                btype='pass')
                signal_tmp = np.array(
                    [filtfilt(filt_b, filt_a, x) for x in signal])
            elif filt == 'cheby':
                filt_b, filt_a = cheby2(1, 10, [
                    2 * (frq - 1) / float(to_frequency), 2 *
                    (frq + 1) / float(to_frequency)
                ], 'pass')
                signal_tmp = np.array(
                    [filtfilt(filt_b, filt_a, x) for x in signal])
            elif filt == 'conv':
                t_vec = np.linspace(0, 0.5 - 1.0 / to_frequency,
                                    0.5 * to_frequency)
                sin = np.sin(t_vec * 2 * np.pi)
                sin /= sum(sin**2)
                M = len(sin)
                K = len(signal[0, :])
                signal_tmp = np.array([
                    np.convolve(sin, x, mode='full')[M:K + M] for x in signal
                ])
            elif filt == None:
                signal_tmp = signal
            tags = [x for (x, y) in all_tags if y == frq]
            rest_tags = [x for (x, y) in all_tags if y != frq]
            for idx in xrange(min(len(tags), len(rest_tags))):
                s_post = signal_tmp[:, to_frequency * (tags[idx] ) : to_frequency * (tags[idx] +\
                         signal_time)]
                dane_B = np.matrix(s_post)
                R_B = dane_B * dane_B.T / np.trace(dane_B * dane_B.T)
                cov_post += R_B
                post_i += 1
                if baseline:
                    if method == 'maxcontrast' or method == 'minimalentropy':
                        s_pre = signal_tmp[:, to_frequency *\
                                (tags[idx] + 1) : to_frequency * (tags[idx] + signal_time)]
                        dane_A = np.matrix(s_pre)
                        X = np.matrix(
                            self.__get_model_matrix(frq, s_pre.shape[1],
                                                    to_frequency))
                        Y = dane_A - (X.T * np.linalg.inv(X * X.T) * X *
                                      dane_A.T).T
                        cov_pre += Y * Y.T / np.trace(Y * Y.T)
                        pre_i += 1
                    else:
                        s_pre = signal_tmp[:, to_frequency * (tags[idx] -\
                            1 - base_time) : to_frequency * (tags[idx] -1)]
                        dane_A = np.matrix(s_pre)
                        R_A = dane_A * dane_A.T / np.trace(dane_A * dane_A.T)
                        cov_pre += R_A
                        pre_i += 1
            if not baseline:
                for idx in rest_tags:
                    s_pre = signal_tmp[:, to_frequency * (idx ) : to_frequency *\
                            (idx  + signal_time)]
                    dane_A = np.matrix(s_pre)
                    R_A = dane_A * dane_A.T / np.trace(dane_A * dane_A.T)
                    cov_pre += R_A
                    pre_i += 1
        if method == 'regular' or method == 'maxcontrast':
            self.P[:, :], self.vals = self.__get_filter(
                cov_post / post_i, cov_pre / pre_i)
        elif method == 'pfu':
            self.P[:, :] = pfu_csp(cov_pre / pre_i, cov_post / post_i)
        elif method == 'minimalentropy':
            self.P[:, :], self.vals = self.__get_min_entropy(cov_pre / pre_i)
Ejemplo n.º 46
0
 def test_cheby2_6(self):
     # Test case for bandstop filter
     IIR = IIRDesign.cheby2(self.n, self.Rs, self.Ws2, ftype='stop')
     iir = signal.cheby2(self.n, self.Rs, self.Ws2, btype='bandstop', fs=2)
     self.assertTrue((IIR[0] == iir[0]).all() and (IIR[1] == iir[1]).all())
Ejemplo n.º 47
0
    'CB1': 60,
    'O1': 61,
    'Oz': 62,
    'O2': 63,
    'CB2': 64
}

# Only channel_idx is selected
channel_idx = [
    channels[items]
    for items in ['PZ', 'PO3', 'PO4', 'PO5', 'PO6', 'POz', 'O1', 'O2', 'Oz']
]
channel_idx = np.array(channel_idx) - 1
# bandpass filter
fmax = fs / 2
sos = cheby2(6, 20, [6 / fmax, 60 / fmax], btype='bandpass', output='sos')

# data path

dir_list = os.listdir(PathData)
dir_list.sort(
    key=lambda a: int(re.findall('\d+', a)[0]))  # sort list by numbers

for ii, f_name in enumerate(dir_list):

    path1 = os.path.join(PathData, f_name)
    temp_file = sio.loadmat(path1)
    data = temp_file['data']

    # select [0.5+0.14 s : 5.5+0.14 s] time window
    time_index = np.arange((fs / 2) + round(subject_latency[ii] * fs),
Ejemplo n.º 48
0
    t = str(data['FilterType'])
    n = int(data['Order'])
    fc1 = data['cutoff1']
    fc2 = data['cutoff2']
    att = int(data['attenuation'])

    # Bandpass and Bandstop requires 2 cutoff points

    if t == 'bandpass' or t == 'bandstop':
        fc = [float(fc1), float(fc2)]
    else:
        fc = float(fc1)

    # Generate filter coefficients

    sos = signal.cheby2(N=n, rs=att, Wn=fc, btype=t, output='sos')

    # Create empty dictionary with DirectForm field

    out = {}
    out['DirectForm'] = []

    # Create as many fields of DirectForm as many the sos does in a json format

    for i in range(len(sos)):

        coeff = {
            "i": i,
            "b0": np.round(sos[i][0] * (2**14)),
            "b1": np.round(sos[i][1] * (2**14)),
            "b2": np.round(sos[i][2] * (2**14)),
def synthesizeQNTF(order=4, OSR=64, f0=0., NG=-60, ING=-20, n_im=None):
    """Synthesize a noise transfer function for a quadrature modulator.

    **Parameters:**

    order : int, optional
        The order of the modulator. Defaults to 4.

    OSR : int, optional
        The oversampling ratio. Defaults to 64.

    f0 : float, optional
        The center frequency, normalized such that :math:`1 \\rightarrow f_s`.
        Defaults to 0, ie to a low-pass modulator.

    NG : float, optional
        The in-band noise gain, expressed in dB. Defaults to -60.

    ING : float, optional
        The image-band noise gain, in dB. Defaults to -20.

    n_im : int, optional
        The number of in-band image zeros, defaults to ``floor(order/3)``.

    **Returns:**

    ntf : (z, p, k) tuple
        ``ntf`` is a zpk tuple containing the zeros, poles and the gain of the
        synthesized NTF.

    .. note::

        From the MATLAB Delta-Sigma Toolbox:
        ALPHA VERSION:
        This function uses an experimental ad-hoc method that is
        neither optimal nor robust.

    **Example:**

    Fourth order quadrature modulator::

        from deltasigma import *
        order = 4
        osr = 32
        NG = -50
        ING = -10
        f0 = 1 / 16
        ntf0 = synthesizeQNTF(order, osr, f0, NG, ING)
        pretty_lti(ntf0)

    Returns::

          (z - 0.888 - 0.4598j) (z - 0.9239 + 0.3827j) (z - 0.9239 - 0.3827j) (z - 0.953 - 0.3028j)  
          ---------------------------------------------------------------------------------------------
           (z - 0.5739 - 0.5699j) (z - 0.5913 - 0.2449j) (z - 0.6731 + 0.2788j) (z - 0.8088 - 0.0028j) 


    .. image:: _static/synthesizeQNTF.png


    """
    if n_im is None:
        n_im = np.floor(order/3)
    debug_it = 0
    if n_im == 0:
        # Use synthesizeNTF to get an NTF with the specified NG; ignore ING
        f1 = 0.5/OSR
        x = 1.5
        lowest_f = np.inf
        dfdx = None
        for itn in range(ITN_MAX):
            ntf = synthesizeNTF(order, OSR, 1., x)
            f = dbv(rmsGain(ntf, 0., f1)) - NG
            if debug_it:
                print('x=%.2f f=%.2f' % (x, f))
            if abs(f) < 0.01:
                break
            if dfdx is None:
                dx = 0.1*np.sign(f)
                dfdx = 0
            else:
                dfdx = (f - f_old)/dx
                dx_old = dx
                dx = - f/dfdx
                if abs(dx) > max((1, 2*abs(dx_old))):
                    dx = np.sign(dx)*max((1, 2*abs(dx_old)))
                if x + dx <= 1:
                    # Hinf must be at least 1
                    dx = dx/2.
            f_old = f
            x = x + dx
        if itn == ITN_MAX - 1:
            warn('Iteration limit reached. NTF may be poor.')
        # Rotate the NTF
        z0 = np.exp(2j*np.pi*f0)
        zeros, poles, k = _get_zpk(ntf)
        ntf = (z0*zeros, z0*poles, k)
    else:
        n_in = order - n_im
        f1 = f0 - 0.5/OSR
        f2 = f0 + 0.5/OSR
        z0 = np.exp(2j*np.pi*f0)
        x = np.array([20., 20.])
        # "R" parameters for cheby2()
        lowest_f = np.inf
        dfdx = np.array([float('NaN'), float('NaN')])
        freq = np.linspace(-0.5, 0.5, 200)
        for itn in range(ITN_MAX):
            if debug_it:
                print('\nx = [%.2f, %.2f]' % (x[0], x[1]))
            b1, a1 = cheby2(n_in, x[0], 1./OSR, 'highpass')
            b2, a2 = cheby2(n_im, x[1], 1./OSR, 'highpass')
            ntf0 = (np.concatenate((np.roots(b1)*z0, np.roots(b2)*np.conj(z0))),
                    np.concatenate((np.roots(a1)*z0, np.roots(a2)*np.conj(z0))),
                    1)
            m = evalTF(ntf0, np.exp(2j*np.pi*freq))
            NG0 = dbv(rmsGain(ntf0, f1, f2))
            ING0 = dbv(rmsGain(ntf0, -f1, -f2))
            if debug_it:
                import pylab as plt
                from ._plotPZ import plotPZ
                from ._figureMagic import figureMagic
                plt.figure()
                plt.subplot(121)
                plotPZ(ntf0)
                plt.subplot(122)
                print('NG = %.1f, ING= %.1f' % (NG0, ING0))
                plt.plot(freq, dbv(m))
                figureMagic([-0.5, 0.5], 0.05, 2, [-100, 30], 10, 2)
                plt.hold(True)
                plt.plot([f1, f2], [NG0, NG0], 'k')
                plt.text(np.mean([f1, f2]), NG0, ('NG=%.1fdB' % NG0), va='bottom')
                plt.plot([-f1, -f2], [ING0, ING0], 'k')
                plt.text(np.mean([-f1, -f2]), ING0, ('ING=%.1fdB' % ING0), va='bottom')
                plt.show()
            f = np.array([NG0 - NG, ING0 - ING])
            if max(abs(f)) < 0.01:
                break
            if norm(f) < lowest_f:
                lowest_f = norm(f)
                # ntf0 is ALREADY a zpk tuple
                zeros, poles, k = ntf0
                best = (zeros.copy(), poles.copy(), k)
            if abs(f[0]) > abs(f[1]):
                # adjust x(1)
                i = 0
            else:
                # adjust x(2)
                i = 1
            if np.isnan(dfdx[i]):
                dx = np.sign(f[i])
                dfdx[i] = 0
                dfdx[1 - i] = float('NaN')
            else:
                dfdx[i] = (f[i] - f_old[i])/dx
                dfdx[1 - i] = float('NaN')
                dx = -f[i]/dfdx[i]
                xnew = x[i] + dx
                if xnew < 0.5*x[i]:
                    dx = -0.5*x[i]
                else:
                    if xnew > 2*x[i]:
                        dx = x[i]
            f_old = f.copy()
            x[i] = x[i] + dx
        if itn == ITN_MAX - 1:
            warn('Iteration limit reached. NTF may be poor')
        ntf = best
    return ntf
# extract
time = data[:, 0] * 1e-03
flow = data[:, 1] * 1e-03
N2 = data[:, 4]

#--------------------
# SIGNAL PROCESSING
#--------------------

# store raw
time_raw = np.copy(time)
flow_raw = np.copy(flow)

# low-pass filter flow signal
b, a = cheby2(4, 40, 0.05, btype='low')
flow_f = filtfilt(b, a, flow)

# re-sample
time = np.arange(time[0], time[-1], dt)

interpolant_flow = interp1d(time_raw, flow_f, kind='quadratic')
flow_f = interpolant_flow(time)
#flow_f = np.interp(time, time_raw, flow_f)

interpolant_N2 = interp1d(time_raw, N2, kind='quadratic')
N2 = interpolant_N2(time)
#N2 = np.interp(time, time_raw, N2)

# find start of washout
st_estim = min(time[N2 < 0.5 * max(N2)]) - 0.5
Ejemplo n.º 51
0
def transform_signal(dat, s_freq, method, method_opt=None):
    """Transform the data using different methods.

    Parameters
    ----------
    dat : ndarray (dtype='float')
        vector with all the data for one channel
    s_freq : float
        sampling frequency
    method : str
        one of 'cheby2', 'butter', 'morlet', 'morlet_real', 'hilbert', 'abs',
        'moving_avg'
    method_opt : dict
        depends on methods

    Returns
    -------
    ndarray (dtype='float')
        vector with all the data for one channel

    Notes
    -----
    Wavelets pass only absolute values already, it does not make sense to store
    the complex values.

    Methods
    -------
    cheby2 has parameters:
        freq : tuple of float
            high and low values for bandpass
        order : int
            filter order

    butter has parameters:
        freq : tuple of float
            high and low values for bandpass
        order : int
            filter order

    morlet has parameters:
        f0 : float
            center frequency in Hz
        sd : float
            standard deviation of frequency
        dur : float
            window length in number of standard deviations

    morlet_real has parameters:
        freqs : ndarray
            vector of wavelet frequencies for spindle detection
        dur : float
            duration of the wavelet (sec)
        width : float
            wavelet width
        win : float
            moving average window length (sec) of wavelet convolution

    moving_avg has parameters:
        dur : float
            duration of the window (sec)

    """
    if 'cheby2' == method:
        freq = method_opt['freq']
        N = method_opt['order']

        Rs = 80
        nyquist = s_freq / 2
        Wn = asarray(freq) / nyquist
        b, a = cheby2(N, Rs, Wn, btype='bandpass')
        dat = filtfilt(b, a, dat)

    if 'butter' == method:
        freq = method_opt['freq']
        N = method_opt['order']

        nyquist = s_freq / 2
        Wn = asarray(freq) / nyquist
        b, a = butter(N, Wn, btype='bandpass')
        dat = filtfilt(b, a, dat)

    if 'morlet' == method:
        f0 = method_opt['f0']
        sd = method_opt['sd']
        dur = method_opt['dur']

        wm = _wmorlet(f0, sd, s_freq, dur)
        dat = absolute(fftconvolve(dat, wm, mode='same'))

    if 'wavelet_real' == method:
        freqs = method_opt['freqs']
        dur = method_opt['dur']
        width = method_opt['width']
        win = method_opt['win'] * s_freq

        wm = _realwavelets(s_freq, freqs, dur, width)
        tfr = empty((dat.shape[0], wm.shape[0]))
        for i, one_wm in enumerate(wm):
            x = abs(fftconvolve(dat, one_wm, mode='same'))
            tfr[:, i] = fftconvolve(x, tukeywin(win), mode='same')
        dat = mean(tfr, axis=1)

    if 'hilbert' == method:
        dat = hilbert(dat)

    if 'abs' == method:
        dat = absolute(dat)

    if 'moving_avg' == method:
        dur = method_opt['dur']

        flat = ones(int(dur * s_freq))
        dat = fftconvolve(dat, flat / sum(flat), mode='same')

    return dat
k=0
for x in df['path']:
    k=k+1
    spf = wave.open(x,'r')
    signal = spf.readframes(-1)
    signal = np.fromstring(signal, 'Int16')
    frames=spf.getnframes()

    max_amp,min_amp=get_min_max_amp(signal)

    for i in range(0,frames):
        signal[i]=(min_amp-signal[i]/max_amp-min_amp)*1000

    beat=beat_cout(signal,0.25,max_amp)
    # frinch_search_beat(signal,frames)
    sos = sc.cheby2(10, 40, 17, btype='highpass', fs=4000, output='sos')
    filtered = sc.sosfilt(sos, signal)
    local_maxima_plot(signal)
    # spectrum=fft.fft(signal)
    # freq = fft.fftfreq(len(spectrum))
    #
    # threshold = 0.5 * max(abs(spectrum))
    # mask = abs(spectrum) > threshold
    # peaks = freq[mask]
    # plot.plot(freq, abs(spectrum))
    # plot.show()
    # plot.plot(signal)



Ejemplo n.º 53
0
def monhe(raw, srate, show=0, show2=0, show3=1, filter=True):
    """
        GREAT but:
            discard crossings close to one another by less than 100 ms

    """
    # 0 - Remove EMG, powerline and baseline shift
    if filter:
        rawend = prefilt(raw, srate, show)
    else:
        rawend = np.copy(raw)

    # 0.5 - Choice sign of peaks (batch)
    up = definepeak(rawend, srate)

    # 1 - filter block (chebyshev 4th order 6-18 Hz)
    nyqfreq = srate / 2.
    filtband = [6 / nyqfreq, 18 / nyqfreq]

    num, den = ss.cheby2(4, 40, filtband, btype='bandpass')
    # filtafter2 = ss.filtfilt(num, den, raw)
    filtafter = ss.filtfilt(num, den, rawend)

    if show:
        fig = pl.figure()
        mngr = pl.get_current_fig_manager()
        mngr.window.setGeometry(950, 50, 1000, 800)
        ax = fig.add_subplot(411)
        ax.plot(raw)
        ax.set_title('raw signal')
        ax = fig.add_subplot(412)
        ax.plot(rawend)
        ax.set_title('filtered from raw')
        ax = fig.add_subplot(413)
        # ax.plot(filtafter2)
        ax.plot(filtafter, 'r')
        ax.set_title('filtered for algorithm after preprocessing')
        ax = fig.add_subplot(414)
        ax.plot(filtafter)
        ax.set_title('filtered for algorithm')
        pl.show()
        raw_input('cleaning')

    # 2 - differentiate the signal and normalize according to max derivative in the signal
    diffsig = np.diff(filtafter)
    diffmax = np.max(np.abs(diffsig))
    dsignal = diffsig / diffmax

    # 3 - Get Shannon energy envelope
    diffsquare = dsignal**2
    logdiff = np.log(diffsquare)
    shannon = -1 * diffsquare * logdiff

    # 4 - Two sided zero-phase filtering
    windowlen = 0.15 * srate  # safe length of a QRS pulse
    rectangular = ss.boxcar(windowlen)
    smoothfirst = ss.convolve(shannon, rectangular, mode='same')
    revfirst = smoothfirst[::-1]
    smoothsec = ss.convolve(revfirst, rectangular, mode='same')
    smoothfinal = smoothsec[::-1]

    # 5 - Hilbert transform applied to the smoothed shannon energy envelope
    hilbbuff = ss.hilbert(smoothfinal)
    hilbsign = np.imag(hilbbuff)

    # 6 - Get moving average of the hilbert transform so as to subtract after
    n = int(2.5 * srate)
    movwind = np.ones(n) / n
    movav = ss.convolve(hilbsign, movwind, mode='same')
    analyser = hilbsign - movav

    # 7 - Get zero crossings (from negative to positive) of the 'analyser' signal
    zero_crossings = np.where(np.diff(np.sign(analyser)))[0]
    zero_crossings = zero_crossings[
        zero_crossings >
        0.05 * srate]  # discard boundary effect that might appear at start
    crossers = analyser[zero_crossings]
    beats = zero_crossings[crossers < 0]
    crossdiffs = np.diff(beats)
    dangerous = crossdiffs < 0.15 * srate  # to avoid stupid repetitions
    dangerous = np.nonzero(dangerous)[0]
    if len(dangerous):
        print 'DANGER', beats[dangerous]
        beats = np.delete(beats, dangerous)

    # 7.1 -------- EXTRA ANTI-FALSE-POSITIVES --------
    store_size = 5
    index_store = 0
    anti_fp = 0.26
    anti_massive = 4
    anti_badset = 3
    reset_count = 0
    cross_storer = np.zeros(store_size)
    crossderivs = np.diff(analyser)
    beats = sorted(list(beats))
    iterator = beats[:]
    evilbeats = []
    for b in iterator:
        cross_med = np.median(cross_storer)
        # print 'info', b, crossderivs[b], anti_fp*cross_med, cross_med, anti_massive*cross_med
        # massive slopes can be eliminated here too (decided not too because it helps in defining Agrafioti windows)
        if crossderivs[b] > anti_fp * cross_med:
            reset_count = 0
            if crossderivs[b] < anti_massive * cross_med or cross_med < 1e-10:
                # print 'store'
                cross_storer[index_store] = crossderivs[b]
                index_store += 1
                if index_store == store_size:
                    index_store = 0
        else:
            reset_count += 1
            print '\tEVIL SLOPE', b, crossderivs[
                b], anti_fp * cross_med, reset_count
            evilbeats.append(b)
            beats.remove(b)
        if reset_count >= anti_badset:
            print '\tRESET'
            reset_count = 0
            cross_storer = np.zeros(store_size)
    beats = np.array(beats, dtype=int)
    evilbeats = np.array(evilbeats)

    # 8 ----------------------------------------- Find the R-peak exactly -----------------------------------------
    search = int(0.15 * srate)
    adjacency = int(0.03 * srate)
    diff_nr = int(0.01 * srate)
    rawbeats = []
    for b in xrange(len(beats)):
        if beats[b] - search < 0:
            rawwindow = rawend[0:beats[b] + search]
            add = 0
        elif beats[b] + search >= len(rawend):
            rawwindow = rawend[beats[b] - search:len(rawend)]
            add = beats[b] - search
        else:
            rawwindow = rawend[beats[b] - search:beats[b] + search]
            add = beats[b] - search
        # ----- get peaks -----
        w_peaks = peakd.sgndiff(Signal=rawwindow)['Peak']
        w_negpeaks = peakd.sgndiff(Signal=window, a=1)['Peak']
        zerdiffs = np.where(np.diff(rawwindow) == 0)[0]
        w_peaks = np.concatenate((w_peaks, zerdiffs))
        w_negpeaks = np.concatenate((w_negpeaks, zerdiffs))

        if up:
            pospeaks = sorted(zip(rawwindow[w_peaks], w_peaks), reverse=True)
        else:
            pospeaks = sorted(zip(rawwindow[w_negpeaks], w_negpeaks))
        # print '\n peaksssss', pospeaks

        try:
            twopeaks = [pospeaks[0]]
        except IndexError:
            twopeaks = []

        # ----------- getting peaks -----------
        for i in xrange(len(pospeaks) - 1):
            if abs(pospeaks[0][1] - pospeaks[i + 1][1]) > adjacency:
                twopeaks.append(pospeaks[i + 1])
                break

        poslen = len(twopeaks)

        if poslen == 2:
            # --- get maximum slope for max peak ---
            if twopeaks[0][1] < diff_nr:
                diff_f = np.diff(rawwindow[0:twopeaks[0][1] + diff_nr])
            elif twopeaks[0][1] + diff_nr >= len(rawwindow):
                diff_f = np.diff(rawwindow[twopeaks[0][1] -
                                           diff_nr:len(rawwindow)])
            else:
                diff_f = np.diff(rawwindow[twopeaks[0][1] -
                                           diff_nr:twopeaks[0][1] + diff_nr])
            max_f = np.max(np.abs(diff_f))
            # --- get maximum slope for second peak ---
            if twopeaks[1][1] < diff_nr:
                diff_s = np.diff(rawwindow[0:twopeaks[1][1] + diff_nr - 1])
            elif twopeaks[1][1] + diff_nr >= len(rawwindow):
                diff_s = np.diff(rawwindow[twopeaks[1][1] - diff_nr +
                                           1:len(rawwindow)])
            else:
                diff_s = np.diff(rawwindow[twopeaks[1][1] - diff_nr +
                                           1:twopeaks[1][1] + diff_nr - 1])
            max_s = np.max(np.abs(diff_s))
            if show2:
                print 'diffs, main', diff_f, max_f, '\nsec', diff_s, max_s
            if max_f > max_s:
                # print '\tbigup'
                assignup = [twopeaks[0][0], twopeaks[0][1]]
            else:
                # print '\tsmallup'
                assignup = [twopeaks[1][0], twopeaks[1][1]]
            rawbeats.append(assignup[1] + add)
        elif poslen == 1:
            rawbeats.append(twopeaks[0][1] + add)
        else:
            rawbeats.append(beats[b])

        if show2:
            fig = pl.figure()
            mngr = pl.get_current_fig_manager()
            mngr.window.setGeometry(950, 50, 1000, 800)
            ax = fig.add_subplot(111)
            ax.plot(rawwindow, 'b')
            for i in xrange(poslen):
                ax.plot(twopeaks[i][1], twopeaks[i][0], 'bo', markersize=10)
            ax.plot(rawbeats[b] - add,
                    rawwindow[rawbeats[b] - add],
                    'yo',
                    markersize=7)
            ax.grid('on')
            ax.axis('tight')
            pl.show()
            raw_input('---')
            pl.close()

    # 8 ----------------------------------------- END OF POINT 8 -----------------------------------------

    if show3:
        fig = pl.figure()
        mngr = pl.get_current_fig_manager()
        mngr.window.setGeometry(950, 50, 1000, 800)
        ax = fig.add_subplot(412)
        ax.plot(rawend)
        if len(rawbeats):
            ax.plot(rawbeats, rawend[rawbeats], 'go')
        ax.set_title('end signal')
        ax = fig.add_subplot(411)
        ax.plot(raw)
        if beats.any():
            ax.plot(beats, raw[beats], 'go')
        ax.set_title('filtered from raw')
        ax = fig.add_subplot(413)
        ax.plot(smoothfinal)
        ax.set_title('smooth shannon')
        ax = fig.add_subplot(414)
        ax.plot(analyser)
        if beats.any():
            ax.plot(beats, analyser[beats], 'go')
        if evilbeats.any():
            ax.plot(evilbeats, analyser[evilbeats], 'ro')
        ax.plot(hilbsign, 'r')
        ax.set_title('analysed signal')
        pl.show()
        raw_input('shannon')

    # pl.close('all')

    # kwrvals
    kwrvals = {'Signal': rawend, 'R': sorted(list(frozenset(rawbeats)))}

    return kwrvals
Ejemplo n.º 54
0
    For digital filters, Wn are in the same units as fs. By default, fs is 2 half-cycles/sample, so these are normalized from 0 to 1, where 1 is the Nyquist frequency. (Wn is thus in half-cycles / sample.)

    For analog filters, Wn is an angular frequency (e.g., rad/s).
"""

"""
███████ ██   ██  ██████  ███████     ██████  
██       ██ ██  ██    ██ ██               ██ 
█████     ███   ██    ██ ███████      █████  
██       ██ ██  ██    ██      ██     ██      
███████ ██   ██  ██████  ███████     ███████ 
                                             
                                             """


sosTypeII = signal.cheby2(10, 20, fc, 'highpass', fs=2000, output='sos')
                    #cheby2   #rs = 20
    #rs float The minimum attenuation required in the stop band. Specified in decibels, as a positive number.


filtered_II = signal.sosfilt(sosTypeII, s)

affichage('Exos 2 : After 25 Hz high-pass filter with Chebyshev Type II',2,s,filtered_II)

"""
███████ ██   ██  ██████  ███████     ██████  
██       ██ ██  ██    ██ ██               ██ 
█████     ███   ██    ██ ███████      █████  
██       ██ ██  ██    ██      ██          ██ 
███████ ██   ██  ██████  ███████     ██████  
                                             
Ejemplo n.º 55
0
 def LPmin(self, fil_dict):
     self.get_params(fil_dict)
     self.N, self.F_SBC = cheb2ord(self.F_PB,self.F_SB, self.A_PB,self.A_SB,
                                                   analog = self.analog)
     self.save(fil_dict, sig.cheby2(self.N, self.A_SB, self.F_SBC,
                     btype='lowpass', analog = self.analog, output = frmt))
def synthesizeQNTF(order=4, OSR=64, f0=0., NG=-60, ING=-20, n_im=None):
    """Synthesize a noise transfer function for a quadrature modulator.

    **Parameters:**

    order : int, optional
        The order of the modulator. Defaults to 4.

    OSR : int, optional
        The oversampling ratio. Defaults to 64.

    f0 : float, optional
        The center frequency, normalized such that :math:`1 \\rightarrow f_s`.
        Defaults to 0, ie to a low-pass modulator.

    NG : float, optional
        The in-band noise gain, expressed in dB. Defaults to -60.

    ING : float, optional
        The image-band noise gain, in dB. Defaults to -20.

    n_im : int, optional
        The number of in-band image zeros, defaults to ``floor(order/3)``.

    **Returns:**

    ntf : (z, p, k) tuple
        ``ntf`` is a zpk tuple containing the zeros, poles and the gain of the
        synthesized NTF.

    .. note::

        From the MATLAB Delta-Sigma Toolbox:
        ALPHA VERSION:
        This function uses an experimental ad-hoc method that is
        neither optimal nor robust.

    **Example:**

    Fourth order quadrature modulator::

        from deltasigma import *
        order = 4
        osr = 32
        NG = -50
        ING = -10
        f0 = 1 / 16
        ntf0 = synthesizeQNTF(order, osr, f0, NG, ING)
        pretty_lti(ntf0)

    Returns::

          (z - 0.888 - 0.4598j) (z - 0.9239 + 0.3827j) (z - 0.9239 - 0.3827j) (z - 0.953 - 0.3028j)  
          ---------------------------------------------------------------------------------------------
           (z - 0.5739 - 0.5699j) (z - 0.5913 - 0.2449j) (z - 0.6731 + 0.2788j) (z - 0.8088 - 0.0028j) 


    .. image:: _static/synthesizeQNTF.png


    """
    if n_im is None:
        n_im = np.floor(order/3)
    debug_it = 0
    if n_im == 0:
        # Use synthesizeNTF to get an NTF with the specified NG; ignore ING
        f1 = 0.5/OSR
        x = 1.5
        lowest_f = np.inf
        dfdx = None
        for itn in range(ITN_MAX):
            ntf = synthesizeNTF(order, OSR, 1., x)
            f = dbv(rmsGain(ntf, 0., f1)) - NG
            #f_old = f
            if debug_it:
                print('x=%.2f f=%.2f' % (x, f))
            if abs(f) < 0.01:
                break
            if dfdx is None:
                dx = 0.1*np.sign(f)
                dfdx = 0
            else:
                dfdx = (f - f_old)/dx
                dx_old = dx
                dx = - f/dfdx
                if abs(dx) > max((1, 2*abs(dx_old))):
                    dx = np.sign(dx)*max((1, 2*abs(dx_old)))
                if x + dx <= 1:
                    # Hinf must be at least 1
                    dx = dx/2.
            f_old = f
            x = x + dx
        if itn == ITN_MAX - 1:
            warn('Iteration limit reached. NTF may be poor.')
        # Rotate the NTF
        z0 = np.exp(2j*np.pi*f0)
        zeros, poles, k = _get_zpk(ntf)
        ntf = (z0*zeros, z0*poles, k)
    else:
        n_in = order - n_im
        f1 = f0 - 0.5/OSR
        f2 = f0 + 0.5/OSR
        z0 = np.exp(2j*np.pi*f0)
        x = np.array([20., 20.])
        # "R" parameters for cheby2()
        lowest_f = np.inf
        dfdx = np.array([float('NaN'), float('NaN')])
        freq = np.linspace(-0.5, 0.5, 200)
        for itn in range(ITN_MAX):
            if debug_it:
                print('\nx = [%.2f, %.2f]' % (x[0], x[1]))
            b1, a1 = cheby2(n_in, x[0], 1./OSR, 'highpass')
            b2, a2 = cheby2(n_im, x[1], 1./OSR, 'highpass')
            ntf0 = (np.concatenate((np.roots(b1)*z0, np.roots(b2)*np.conj(z0))),
                    np.concatenate((np.roots(a1)*z0, np.roots(a2)*np.conj(z0))),
                    1)
            m = evalTF(ntf0, np.exp(2j*np.pi*freq))
            NG0 = dbv(rmsGain(ntf0, f1, f2))
            ING0 = dbv(rmsGain(ntf0, -f1, -f2))
            if debug_it:
                import pylab as plt
                from ._plotPZ import plotPZ
                from ._figureMagic import figureMagic
                plt.figure()
                plt.subplot(121)
                plotPZ(ntf0)
                plt.subplot(122)
                print('NG = %.1f, ING= %.1f' % (NG0, ING0))
                plt.plot(freq, dbv(m))
                figureMagic([-0.5, 0.5], 0.05, 2, [-100, 30], 10, 2)
                plt.hold(True)
                plt.plot([f1, f2], [NG0, NG0], 'k')
                plt.text(np.mean([f1, f2]), NG0, ('NG=%.1fdB' % NG0), va='bottom')
                plt.plot([-f1, -f2], [ING0, ING0], 'k')
                plt.text(np.mean([-f1, -f2]), ING0, ('ING=%.1fdB' % ING0), va='bottom')
                plt.show()
            f = np.array([NG0 - NG, ING0 - ING])
            #f_old = f.copy()
            if max(abs(f)) < 0.01:
                break
            if norm(f) < lowest_f:
                lowest_f = norm(f)
                # ntf0 is ALREADY a zpk tuple
                zeros, poles, k = ntf0
                best = (zeros.copy(), poles.copy(), k)
            if abs(f[0]) > abs(f[1]):
                # adjust x(1)
                i = 0
            else:
                # adjust x(2)
                i = 1
            if np.isnan(dfdx[i]):
                dx = np.sign(f[i])
                dfdx[i] = 0
                dfdx[1 - i] = float('NaN')
            else:
                dfdx[i] = (f[i] - f_old[i])/dx
                dfdx[1 - i] = float('NaN')
                dx = -f[i]/dfdx[i]
                xnew = x[i] + dx
                if xnew < 0.5*x[i]:
                    dx = -0.5*x[i]
                else:
                    if xnew > 2*x[i]:
                        dx = x[i]
            f_old = f.copy()
            x[i] = x[i] + dx
        if itn == ITN_MAX - 1:
            warn('Iteration limit reached. NTF may be poor')
        ntf = best
    return ntf
Ejemplo n.º 57
0
 def BSmin(self, fil_dict):
     self.get_params(fil_dict)
     self.N, self.F_SBC = cheb2ord([self.F_PB, self.F_PB2],
         [self.F_SB, self.F_SB2], self.A_PB, self.A_SB, analog = self.analog)
     self.save(fil_dict, sig.cheby2(self.N, self.A_SB, self.F_SBC,
                     btype='bandstop', analog = self.analog, output = frmt))
Ejemplo n.º 58
0
def get_filter(ftype='FIR',
               band='lowpass',
               order=None,
               frequency=None,
               sampling_rate=1000., **kwargs):
    """Compute digital (FIR or IIR) filter coefficients with the given
    parameters.

    Parameters
    ----------
    ftype : str
        Filter type:
            * Finite Impulse Response filter ('FIR');
            * Butterworth filter ('butter');
            * Chebyshev filters ('cheby1', 'cheby2');
            * Elliptic filter ('ellip');
            * Bessel filter ('bessel').
    band : str
        Band type:
            * Low-pass filter ('lowpass');
            * High-pass filter ('highpass');
            * Band-pass filter ('bandpass');
            * Band-stop filter ('bandstop').
    order : int
        Order of the filter.
    frequency : int, float, list, array
        Cutoff frequencies; format depends on type of band:
            * 'lowpass' or 'bandpass': single frequency;
            * 'bandpass' or 'bandstop': pair of frequencies.
    sampling_rate : int, float, optional
        Sampling frequency (Hz).
    ``**kwargs`` : dict, optional
        Additional keyword arguments are passed to the underlying
        scipy.signal function.

    Returns
    -------
    b : array
        Numerator coefficients.
    a : array
        Denominator coefficients.

    See Also:
        scipy.signal

    """

    # check inputs
    if order is None:
        raise TypeError("Please specify the filter order.")
    if frequency is None:
        raise TypeError("Please specify the cutoff frequency.")
    if band not in ['lowpass', 'highpass', 'bandpass', 'bandstop']:
        raise ValueError(
            "Unknown filter type '%r'; choose 'lowpass', 'highpass', \
            'bandpass', or 'bandstop'."
            % band)

    # convert frequencies
    frequency = _norm_freq(frequency, sampling_rate)

    # get coeffs
    b, a = [], []
    if ftype == 'FIR':
        # FIR filter
        if order % 2 == 0:
            order += 1
        a = np.array([1])
        if band in ['lowpass', 'bandstop']:
            b = ss.firwin(numtaps=order,
                          cutoff=frequency,
                          pass_zero=True, **kwargs)
        elif band in ['highpass', 'bandpass']:
            b = ss.firwin(numtaps=order,
                          cutoff=frequency,
                          pass_zero=False, **kwargs)
    elif ftype == 'butter':
        # Butterworth filter
        b, a = ss.butter(N=order,
                         Wn=frequency,
                         btype=band,
                         analog=False,
                         output='ba', **kwargs)
    elif ftype == 'cheby1':
        # Chebyshev type I filter
        b, a = ss.cheby1(N=order,
                         Wn=frequency,
                         btype=band,
                         analog=False,
                         output='ba', **kwargs)
    elif ftype == 'cheby2':
        # chevyshev type II filter
        b, a = ss.cheby2(N=order,
                         Wn=frequency,
                         btype=band,
                         analog=False,
                         output='ba', **kwargs)
    elif ftype == 'ellip':
        # Elliptic filter
        b, a = ss.ellip(N=order,
                        Wn=frequency,
                        btype=band,
                        analog=False,
                        output='ba', **kwargs)
    elif ftype == 'bessel':
        # Bessel filter
        b, a = ss.bessel(N=order,
                         Wn=frequency,
                         btype=band,
                         analog=False,
                         output='ba', **kwargs)

    return utils.ReturnTuple((b, a), ('b', 'a'))
def synthesizeChebyshevNTF(order=3, OSR=64, opt=0, H_inf=1.5, f0=0.):
    """Synthesize a noise transfer function for a delta-sigma modulator.
    
    The NTF is a type-2 highpass Chebyshev function.

    func:`synthesizeNTF` assumes that magnitude of the denominator of the NTF
    is approximately constant in the passband. When the OSR or ``H_inf`` are
    low, this assumption breaks down and synthesizeNTF yields a non-optimal
    NTF. :func:`synthesizeChebyshevNTF` creates non-optimal NTFs, but fares
    better than synthesizeNTF in the aforementioned circumstances.

    **Parameters:**

    order : int, optional
        order of the modulator, defaults to 3

    OSR : int, optional
        oversampling ratio, defaults to 64

    opt : int, optional
        ignored value, for consistency with ::func:synthesizeNTF

    H_inf : float, optional
        maximum NTF gain, defaults to 1.5

    f0 : float, optional
        center frequency (1->fs), defaults to 0.

    **Returns:**

    z, p, k : tuple 
        a zpk tuple containing the zeros and poles of the NTF.

    **Warns:**

    * If a non-zero value is passed for ``opt``.

    **Raises:**

    * ValueError: Order must be even for a bandpass modulator

    **Example:**

    Compare the NTFs created by :func:`synthesizeNTF` and
    :func:`synthesizeChebyshevNTF` when ``OSR`` is low::

        OSR = 4
        order = 8
        H_inf = 3
        H0 = synthesizeNTF(order,OSR,1,H_inf)
        H1 = synthesizeChebyshevNTF(order,OSR,0,H_inf)

    .. plot::

        import pylab as plt
        import numpy as np
        from deltasigma import *
        OSR = 4
        order = 8
        H_inf = 3
        H0 = synthesizeNTF(order,OSR,1,H_inf)
        H1 = synthesizeChebyshevNTF(order,OSR,0,H_inf)
        # 1. Plot the singularities.
        plotsize = (14, 7)
        plt.subplot(121)
        # we plot the singularities of the optimized NTF in light 
        # green with slightly bigger markers so that we can better
        # distinguish the two NTF's when overlayed.
        plotPZ(H1, markersize=7, color='#90EE90')
        plt.hold(True)
        plotPZ(H0, markersize=5)
        plt.title('NTF Poles and Zeros')
        f = np.concatenate((np.linspace(0, 0.75/OSR, 100), np.linspace(0.75/OSR, 0.5, 100)))
        z = np.exp(2j*np.pi*f)
        magH0 = dbv(evalTF(H0, z))
        magH1 = dbv(evalTF(H1, z))
        # 2. Plot the magnitude responses.
        plt.subplot(222)
        plt.plot(f, magH0, label='synthesizeNTF')
        plt.hold(True)
        plt.plot(f, magH1, label='synthesizeChebyshevNTF')
        figureMagic([0, 0.5], 0.05, None, [-80, 20], 10, None, plotsize)
        plt.xlabel('Normalized frequency ($1\\\\rightarrow f_s)$')
        plt.ylabel('dB')
        plt.legend(loc=4)
        plt.title('NTF Magnitude Response')
        # 3. Plot the magnitude responses in the signal band.
        plt.subplot(224)
        fstart = 0.01
        f = np.linspace(fstart, 1.2, 200)/(2*OSR)
        z = np.exp(2j*np.pi*f)
        magH0 = dbv(evalTF(H0, z))
        magH1 = dbv(evalTF(H1, z))
        plt.semilogx(f*2*OSR, magH0, label='synthesizeNTF')
        plt.hold(True)
        plt.semilogx(f*2*OSR, magH1, label='synthesizeChebyshevNTF')
        plt.axis([fstart, 1, -50, 0])
        plt.grid(True)
        sigma_H0 = dbv(rmsGain(H0, 0, 0.5/OSR))
        sigma_H1 = dbv(rmsGain(H1, 0, 0.5/OSR))
        plt.semilogx([fstart, 1], sigma_H0*np.array([1, 1]), linewidth=3, color='#191970')
        plt.text(0.15, sigma_H0 + 1.5, 'RMS gain = %5.0fdB' % sigma_H0)
        plt.semilogx([fstart, 1], sigma_H1*np.array([1, 1]), linewidth=3, color='#228B22')
        plt.text(0.15, sigma_H1 + 1.5, 'RMS gain = %5.0fdB' % sigma_H1)
        plt.xlabel('Normalized frequency ($1\\\\rightarrow f_B$)')
        plt.ylabel('dB')
        plt.legend(loc=3)
        plt.tight_layout()

    Repeat for ``H_inf`` low::

        OSR = 32
        order = 5
        H_inf = 1.2
        H0 = synthesizeNTF(order, OSR, 1, H_inf)
        H1 = synthesizeChebyshevNTF(order, OSR, 1, H_inf)

    .. plot::

        import pylab as plt
        import numpy as np
        from deltasigma import *
        OSR = 32
        order = 5
        H_inf = 1.2
        H0 = synthesizeNTF(order, OSR, 1, H_inf)
        H1 = synthesizeChebyshevNTF(order, OSR, 1, H_inf)
        # 1. Plot the singularities.
        plotsize = (14, 7)
        plt.subplot(121)
        # we plot the singularities of the optimized NTF in light 
        # green with slightly bigger markers so that we can better
        # distinguish the two NTF's when overlayed.
        plotPZ(H1, markersize=7, color='#90EE90')
        plt.hold(True)
        plotPZ(H0, markersize=5)
        plt.title('NTF Poles and Zeros')
        f = np.concatenate((np.linspace(0, 0.75/OSR, 100), np.linspace(0.75/OSR, 0.5, 100)))
        z = np.exp(2j*np.pi*f)
        magH0 = dbv(evalTF(H0, z))
        magH1 = dbv(evalTF(H1, z))
        # 2. Plot the magnitude responses.
        plt.subplot(222)
        plt.plot(f, magH0, label='synthesizeNTF')
        plt.hold(True)
        plt.plot(f, magH1, label='synthesizeChebyshevNTF')
        figureMagic([0, 0.5], 0.05, None, [-80, 20], 10, None, plotsize)
        plt.xlabel('Normalized frequency ($1\\\\rightarrow f_s)$')
        plt.ylabel('dB')
        plt.legend(loc=4)
        plt.title('NTF Magnitude Response')
        # 3. Plot the magnitude responses in the signal band.
        plt.subplot(224)
        fstart = 0.01
        f = np.linspace(fstart, 1.2, 200)/(2*OSR)
        z = np.exp(2j*np.pi*f)
        magH0 = dbv(evalTF(H0, z))
        magH1 = dbv(evalTF(H1, z))
        plt.semilogx(f*2*OSR, magH0, label='synthesizeNTF')
        plt.hold(True)
        plt.semilogx(f*2*OSR, magH1, label='synthesizeChebyshevNTF')
        plt.axis([fstart, 1, -60, -20])
        plt.grid(True)
        sigma_H0 = dbv(rmsGain(H0, 0, 0.5/OSR))
        sigma_H1 = dbv(rmsGain(H1, 0, 0.5/OSR))
        plt.semilogx([fstart, 1], sigma_H0*np.array([1, 1]), linewidth=3, color='#191970')
        plt.text(0.15, sigma_H0 + 1.5, 'RMS gain = %5.0fdB' % sigma_H0)
        plt.semilogx([fstart, 1], sigma_H1*np.array([1, 1]), linewidth=3, color='#228B22')
        plt.text(0.15, sigma_H1 + 1.5, 'RMS gain = %5.0fdB' % sigma_H1)
        plt.xlabel('Normalized frequency ($1\\\\rightarrow f_B$)')
        plt.ylabel('dB')
        plt.legend(loc=3)
        plt.tight_layout()

    """
    if opt:
        warn("Got a non-zero 'opt' value. Not such optimization is " + \
             "available, opt is only meant to ease switching between " + \
             "synthesizeNTF and synthesizeChebyshevNTF.")
    if f0 != 0:
        if order % 2 != 0:
            raise ValueError('Order must be even for a bandpass modulator.')
        else:
            f1, f2 = ds_f1f2(OSR, f0)
            f1f2 = np.array([f1, f2])
    x_min = 0
    x_max = 300
    dx_max = 10
    ftol = 1e-06
    xtol = 1e-06
    x = 60
    itn_limit = 10
    converged = False
    for itn in range(itn_limit):
        if f0 == 0:
            z, p, k = cheby2(order, x, 1./OSR, btype='high', output='zpk')
        else:
            z, p, k = cheby2(order/2., x, 2.*f1f2, btype='stop', output='zpk')
        f = 1./k - H_inf
        if f > 0:
            x_max = x
        else:
            x_min = x
        if itn == 0:
            dx = -dx_max*np.sign(f)
        else:
            df = f - f_p
            if abs(df) < ftol:
                converged = True
                break
            dx = -f*dx/df
        if converged:
            break
        x_p = x
        f_p = f
        x = max(x_min, min(x + dx, x_max))
        dx = x - x_p
        if abs(dx) < xtol:
            break
    ntf = (z, p, 1)
    return ntf
def cheby_lowpass(wp, ws, fs, gpass, gstop):
    wp = wp / fs
    ws = ws / fs
    order, wn = cheb2ord(wp, ws, gpass, gstop)
    b, a = cheby2(order, gstop, wn)
    return b, a