def ks_2samp(data1, data2): """ Computes the Kolmogorov-Smirnof statistic on 2 samples. This is a two-sided test for the null hypothesis that 2 independent samples are drawn from the same continuous distribution. Parameters ---------- a, b : sequence of 1-D ndarrays two arrays of sample observations assumed to be drawn from a continuous distribution, sample sizes can be different Returns ------- D : float KS statistic p-value : float two-tailed p-value Notes ----- This tests whether 2 samples are drawn from the same distribution. Note that, like in the case of the one-sample K-S test, the distribution is assumed to be continuous. This is the two-sided test, one-sided tests are not implemented. The test uses the two-sided asymptotic Kolmogorov-Smirnov distribution. If the K-S statistic is small or the p-value is high, then we cannot reject the hypothesis that the distributions of the two samples are the same. Examples -------- >>> from scipy import stats >>> import numpy as np >>> from scipy.stats import ks_2samp >>> #fix random seed to get the same result >>> np.random.seed(12345678); >>> n1 = 200 # size of first sample >>> n2 = 300 # size of second sample different distribution we can reject the null hypothesis since the pvalue is below 1% >>> rvs1 = stats.norm.rvs(size=n1,loc=0.,scale=1); >>> rvs2 = stats.norm.rvs(size=n2,loc=0.5,scale=1.5) >>> ks_2samp(rvs1,rvs2) (0.20833333333333337, 4.6674975515806989e-005) slightly different distribution we cannot reject the null hypothesis at a 10% or lower alpha since the pvalue at 0.144 is higher than 10% >>> rvs3 = stats.norm.rvs(size=n2,loc=0.01,scale=1.0) >>> ks_2samp(rvs1,rvs3) (0.10333333333333333, 0.14498781825751686) identical distribution we cannot reject the null hypothesis since the pvalue is high, 41% >>> rvs4 = stats.norm.rvs(size=n2,loc=0.0,scale=1.0) >>> ks_2samp(rvs1,rvs4) (0.07999999999999996, 0.41126949729859719) """ data1, data2 = map(np.asarray, (data1, data2)) n1 = data1.shape[0] n2 = data2.shape[0] n1 = len(data1) n2 = len(data2) data1 = np.sort(data1) data2 = np.sort(data2) data_all = np.concatenate([data1, data2]) #reminder: searchsorted inserts 2nd into 1st array cdf1 = np.searchsorted(data1, data_all, side='right') / (1.0 * n1) cdf2 = (np.searchsorted(data2, data_all, side='right')) / (1.0 * n2) d = np.max(np.absolute(cdf1 - cdf2)) #Note: d absolute not signed distance en = np.sqrt(n1 * n2 / float(n1 + n2)) try: prob = ksprob((en + 0.12 + 0.11 / en) * d) except: prob = 1.0 return d, prob
def ks_2samp(data1, data2): """ Computes the Kolmogorov-Smirnof statistic on 2 samples. This is a two-sided test for the null hypothesis that 2 independent samples are drawn from the same continuous distribution. Parameters ---------- a, b : sequence of 1-D ndarrays two arrays of sample observations assumed to be drawn from a continuous distribution, sample sizes can be different Returns ------- D : float KS statistic p-value : float two-tailed p-value Notes ----- This tests whether 2 samples are drawn from the same distribution. Note that, like in the case of the one-sample K-S test, the distribution is assumed to be continuous. This is the two-sided test, one-sided tests are not implemented. The test uses the two-sided asymptotic Kolmogorov-Smirnov distribution. If the K-S statistic is small or the p-value is high, then we cannot reject the hypothesis that the distributions of the two samples are the same. Examples -------- >>> from scipy import stats >>> import numpy as np >>> from scipy.stats import ks_2samp >>> #fix random seed to get the same result >>> np.random.seed(12345678); >>> n1 = 200 # size of first sample >>> n2 = 300 # size of second sample different distribution we can reject the null hypothesis since the pvalue is below 1% >>> rvs1 = stats.norm.rvs(size=n1,loc=0.,scale=1); >>> rvs2 = stats.norm.rvs(size=n2,loc=0.5,scale=1.5) >>> ks_2samp(rvs1,rvs2) (0.20833333333333337, 4.6674975515806989e-005) slightly different distribution we cannot reject the null hypothesis at a 10% or lower alpha since the pvalue at 0.144 is higher than 10% >>> rvs3 = stats.norm.rvs(size=n2,loc=0.01,scale=1.0) >>> ks_2samp(rvs1,rvs3) (0.10333333333333333, 0.14498781825751686) identical distribution we cannot reject the null hypothesis since the pvalue is high, 41% >>> rvs4 = stats.norm.rvs(size=n2,loc=0.0,scale=1.0) >>> ks_2samp(rvs1,rvs4) (0.07999999999999996, 0.41126949729859719) """ data1, data2 = map(np.asarray, (data1, data2)) n1 = data1.shape[0] n2 = data2.shape[0] n1 = len(data1) n2 = len(data2) data1 = np.sort(data1) data2 = np.sort(data2) data_all = np.concatenate([data1,data2]) #reminder: searchsorted inserts 2nd into 1st array cdf1 = np.searchsorted(data1,data_all,side='right')/(1.0*n1) cdf2 = (np.searchsorted(data2,data_all,side='right'))/(1.0*n2) d = np.max(np.absolute(cdf1-cdf2)) #Note: d absolute not signed distance en = np.sqrt(n1*n2/float(n1+n2)) try: prob = ksprob((en+0.12+0.11/en)*d) except: prob = 1.0 return d, prob