Ejemplo n.º 1
0
def _compute_weights(source_series, parcel_series, identities, inverse):
    cplv_array = plv(source_series, parcel_series, identities)
    """Get weights and flip. This could be the output."""
    weights = scipy.sign(scipy.real(cplv_array)) * scipy.real(cplv_array)**2
    """Create weighted inverse operator and normalize the norm of weighted inv op
    to match original inv op's norm."""
    """Multiply sensor dimension in inverseOperator by weight. This one would be
    the un-normalized operator."""
    weighted_inv = scipy.einsum('ij,i->ij', inverse, weights)

    n_parcels = max(identities) + 1
    """Initialize norm normalized weights. Maybe not necessary."""
    weights_normalized = scipy.zeros(len(weights))
    for parcel in range(n_parcels):  # Normalize parcel level norms.
        # Index sources belonging to parcel
        ii = [i for i, source in enumerate(identities) if source == parcel]

        # Normalize per parcel.
        weights_normalized[ii] = weights[ii] * (norm(inverse[ii]) /
                                                norm(weighted_inv[ii]))
    """Parcel level normalized operator."""
    weighted_inv = scipy.einsum('ij,i->ij', inverse, weights_normalized)
    """Operator level normalized operator. If there are sources not in any
    parcel weightedInvOp gets Nan values due to normalizations."""
    weighted_inv *= norm(inverse) / norm(scipy.nan_to_num(weighted_inv))
    weighted_inv = scipy.nan_to_num(weighted_inv)

    return weighted_inv
Ejemplo n.º 2
0
def fixfermisigns(Lx,Ly,shift,q,H,O,ori):
    fs=[]
    if ori=='trans':
        fs=transfermisigns(Lx,Ly,shift,q)
    elif ori=='long':
        fs=longfermisigns(Lx,Ly,shift,q)
    H=sc.einsum('i,jik,k->jik',fs,H,fs)
    O=sc.einsum('i,jik,k->jik',fs,O,fs)
    return H,O
Ejemplo n.º 3
0
def fixfermisigns(Lx, Ly, shift, q, H, O, ori):
    fs = []
    if ori == 'trans':
        fs = transfermisigns(Lx, Ly, shift, q)
    elif ori == 'long':
        fs = longfermisigns(Lx, Ly, shift, q)
    H = sc.einsum('i,jik,k->jik', fs, H, fs)
    O = sc.einsum('i,jik,k->jik', fs, O, fs)
    return H, O
Ejemplo n.º 4
0
    def process(self, G, verbose=False):
        r"""
        Fit genotypes one-by-one.

        Parameters
        ----------
        G : (`N`, `S`) ndarray
            genotype vector for `N` individuals and `S` variants.
        verbose : bool
            verbose flag.

        Returns
        -------
        pv : ndarray
            P values
        beta : ndarray
            variant effect szies
        """
        import scipy as sp
        import scipy.stats as st

        t0 = time()
        # precompute some stuff
        if self.Ki_dot is None:
            KiG = G
        else:
            KiG = self.Ki_dot(G)
        GKiy = sp.dot(G.T, self.Kiy[:, 0])
        GKiG = sp.einsum("ij,ij->j", G, KiG)
        FKiG = sp.dot(self.F.T, KiG)

        # Let us denote the inverse of Areml as
        # Ainv = [[A0i + m mt / n, m], [mT, n]]
        A0iFKiG = sp.dot(self.A0i, FKiG)
        n = 1.0 / (GKiG - sp.einsum("ij,ij->j", FKiG, A0iFKiG))
        M = -n * A0iFKiG
        self.beta_F = self.beta_F0 + M * sp.dot(M.T, self.FKiy[:, 0]) / n
        self.beta_F += M * GKiy
        self.beta_g = sp.einsum("is,i->s", M, self.FKiy[:, 0])
        self.beta_g += n * GKiy

        # sigma
        s2 = self.yKiy - sp.einsum("i,is->s", self.FKiy[:, 0], self.beta_F)
        s2 -= GKiy * self.beta_g
        s2 /= self.df

        # dlml and pvs
        self.lrt = -self.df * sp.log(s2 / self.s20)
        self.pv = st.chi2(1).sf(self.lrt)

        t1 = time()
        if verbose:
            print("Tested for %d variants in %.2f s" % (G.shape[1], t1 - t0))
Ejemplo n.º 5
0
def GetEigSys(filename,gsfile=None,Nsamp=1,channel=None,wavefile=None,q=None):
    if type(filename)==str:
        filename=[filename]
    hfile=h5py.File(filename[0],'r')
    attr=GetAttr(filename[0])
    if channel==None:
        channel=attr['channel']
    dpath,args=GetStat(filename,Nsamp)
    dat=sc.array(hfile["/rank-1/data-0"])
    hfile.close()
    N=int(sc.shape(dat)[0]/2)
    L=attr['L']
    shift=None
    if 'phasex' in attr.keys():
        shift=[attr['phasex']/2.0,attr['phasey']/2.0]
    else:
        shift=[attr['phase_shift_x']/2.0,attr['phase_shift_y']/2.0]
    H=sc.zeros([Nsamp,N,N],complex)
    O=sc.zeros([Nsamp,N,N],complex)
    E=sc.zeros([Nsamp,N])
    V=sc.zeros([Nsamp,N,N],complex)
    for sample,b in enumerate(args):
        for d in b:
            hfile=h5py.File(dpath[d][0],'r')
            dat=hfile[dpath[d][1]]
            H[sample,:,:]+=dat[0:N,0:2*N:2]+1j*dat[0:N,1:2*N:2]
            O[sample,:,:]+=dat[N:2*N,0:2*N:2]+1j*dat[N:2*N,1:2*N:2]
            hfile.close()
        H[sample,:,:]=0.5*(H[sample,:,:]+sc.conj(H[sample,:,:].T))/len(b)
        O[sample,:,:]=0.5*(O[sample,:,:]+sc.conj(O[sample,:,:].T))/len(b)
    if channel=='groundstate':
        return H
    fs=None
    refstate=sc.zeros(2*L*L)
    refstate[0::2]=1
    if wavefile==None:
        fs=GetFermiSigns(filename[0],refstate,channel=channel)
    else:
        fs=GetFermiSigns(wavefile,refstate,channel=channel)
    for s in range(sc.shape(H)[0]):
        H[s,:,:]=sc.dot(sc.diag(fs),sc.dot(H[s,:,:],sc.diag(fs)))
        O[s,:,:]=sc.dot(sc.diag(fs),sc.dot(O[s,:,:],sc.diag(fs)))
    ren=sc.ones(Nsamp)
    if gsfile!=None:
        ren=RenormalizeFactor(filename,gsfile,Nsamp=1,channel=channel,O=O,q=q)
    print('{0} pair of (H,O) matrices loaded, now diagonalize'.format(sc.shape(H)[0]))
    H=sc.einsum('ijk,i->ijk',H,ren)
    O=sc.einsum('ijk,i->ijk',O,ren)
    for s in range(sc.shape(H)[0]):
        E[s,:],V[s,:,:]=vln.geneigh(sc.squeeze(H[s,:,:]),sc.squeeze(O[s,:,:]))
    print('diagonalization finished')
    return H,O,E,V
Ejemplo n.º 6
0
def sqwtransamp(V,O,Lx,Ly,q,shift,phi,neel,r=sc.zeros((1,2)),rp=sc.zeros((1,2))):
    """
    Returns Sq[sample,r,rp,n]=<q,r|q,n><q,n|q,rp>
    """
    sqn=sc.zeros(sc.shape(V)[0:2],complex)
    kx,ky=fermisea(Lx,Ly,shift)
    pkrp=sc.zeros((sc.shape(V)[1],sc.shape(rp)[0]),complex)
    pkr=sc.zeros((sc.shape(V)[1],sc.shape(r)[0]),complex)
    pkrp[0:len(kx),:]=phiktrans(kx,ky,q[0],q[1],[phi,neel],rp)
    pkr[0:len(ky),:]=phiktrans(kx,ky,q[0],q[1],[phi,neel],r)
    OV=sc.einsum('ijk,ikl->ijl',O,V)
    rhs=sc.einsum('ijk,jl->ikl',sc.conj(OV),pkrp)
    lhs=sc.einsum('ij,kil->kjl',sc.conj(pkr),OV)
    sqn=sc.einsum('ijk,ikl->ijlk',lhs,rhs)
    return sqn
Ejemplo n.º 7
0
def co_occurrence(mats, mode='dot', verbose=False):
    import numpy as np

    # feature co_occurrence within one multi-dimensional features
    if len(mats) == 1:
        x = mats[0]
        if mode == 'dot':
            cont = x.T.dot(x)  # equivalent of x' * y
        elif mode == 'corr':
            cont = np.corrcoef(x, rowvar=0)
        elif mode == 'sparse':
            x = np.sparse.csr_matrix(x)
            cont = x.T.dot(x)
            cont = cont.todense()
        else:
            raise NameError('mode does not exist')

    # feature co_occurrence across two multidimensional features
    if len(mats) == 2:
        x, y = mats[:]
        if mode == 'dot':
            cont = x.T.dot(y)
        elif mode == 'corr':
            x = (x - np.mean(x, axis=0)) / np.std(x, axis=0)
            y = (y - np.mean(y, axis=0)) / np.std(y, axis=0)
            cont = x.T.dot(y)
        elif mode == 'sparse':
            x = np.sparse.csr_matrix(x)
            y = np.sparse.csr_matrix(y)
            cont = x.T.dot(y)
            cont = cont.todense()
        else:
            raise NameError('mode does not exist')

    # feature co_occurrence across three multidimensional features
    if len(mats) == 3:
        x, y, z = mats[:]
        if mode == 'dot':
            cont = einsum('ni,nj,nk', x, y, z)
        elif mode == 'corr':
            x = (x - np.mean(x, axis=0)) / np.std(x, axis=0)
            y = (y - np.mean(y, axis=0)) / np.std(y, axis=0)
            z = (z - np.mean(z, axis=0)) / np.std(z, axis=0)
            cont = einsum('ni,nj,nk', x, y, z)
        else:
            raise NameError('mode does not exist')

    return np.array(cont)  # we don't want returns of type matrix
Ejemplo n.º 8
0
def co_occurrence(mats, mode='dot', verbose=False):
    import numpy as np
    
    # feature co_occurrence within one multi-dimensional features
    if len(mats) == 1:
        x = mats[0]
        if mode == 'dot':
            cont = x.T.dot(x)  # equivalent of x' * y
        elif mode == 'corr':
            cont = np.corrcoef(x, rowvar=0)
        elif mode == 'sparse':
            x = np.sparse.csr_matrix(x)
            cont = x.T.dot(x)
            cont = cont.todense()
        else:
            raise NameError('mode does not exist')

    # feature co_occurrence across two multidimensional features
    if len(mats) == 2:
        x, y = mats[:]
        if mode == 'dot':
            cont = x.T.dot(y)
        elif mode == 'corr':
            x = (x - np.mean(x, axis=0)) / np.std(x, axis=0)
            y = (y - np.mean(y, axis=0)) / np.std(y, axis=0)
            cont = x.T.dot(y)
        elif mode == 'sparse':
            x = np.sparse.csr_matrix(x)
            y = np.sparse.csr_matrix(y)
            cont = x.T.dot(y)
            cont = cont.todense()
        else:
            raise NameError('mode does not exist')

    # feature co_occurrence across three multidimensional features
    if len(mats) == 3:
        x, y, z = mats[:]
        if mode == 'dot':
            cont = einsum('ni,nj,nk', x, y, z)
        elif mode == 'corr':
            x = (x - np.mean(x, axis=0)) / np.std(x, axis=0)
            y = (y - np.mean(y, axis=0)) / np.std(y, axis=0)
            z = (z - np.mean(z, axis=0)) / np.std(z, axis=0)
            cont = einsum('ni,nj,nk', x, y, z)
        else:
            raise NameError('mode does not exist')

    return np.array(cont)  # we don't want returns of type matrix
Ejemplo n.º 9
0
 def blocks():
     bs = 10000
     for i in range(0, n, bs):
         Y = X[i:i + bs].todense()
         Y = sp.einsum('ij,ik->ijk', Y, Y).reshape(Y.shape[0], -1)
         Y = Y @ M
         yield Y
    def grad_f1(self, a):
        "Define the gradient for each convex inequality."

        # Initialize the output vector
        out = sp.zeros((self.M, self.Na))

        # Preliminary calculation
        _xx = sp.einsum('mi,mj->mij', self.xarray, self.xarray)

        # Compute the four terms
        _Da = sp.tensordot(self.D, a, axes=[(0,), (0,)])
        _DDa = sp.tensordot(self.D, _Da, axes=[(1,), (0,)])
        xxDDa = sp.tensordot(_xx.reshape(self.M, self.ndim**2),
                             _DDa.reshape(self.Na, self.ndim**2),
                             axes=[(-1,), (-1,)])

        _BDa = sp.dot(self.B, _Da)
        xBDa = sp.inner(self.xarray, _BDa)

        _Ba = sp.dot(a, self.B)
        _DBa = sp.dot(_Ba, self.D)
        xDBa = sp.tensordot(self.xarray,
                            _DBa, axes=[(-1,), (-1,)])

        BBa = sp.dot(self.B, _Ba)
        
        # compute the gradient by summing the four terms
        out[:, :] = 2.0 * (xxDDa + xBDa + xDBa + BBa)

        return out
Ejemplo n.º 11
0
def phiktrans(kx,ky,qx,qy,p,r=sc.zeros((1,2))):
    """
    Returns phi[k,r] such that |q,r>=sum_k phi[k,r]|q,k>
    """
    kqx=kx-qx
    kqy=ky-qy
    pk=sc.zeros((sc.shape(kx)[0],sc.shape(r)[0]),complex)
    pke=sc.conj(uk(kx,ky,1,1,p))*uk(kqx,kqy,-1,-1,p)+\
        sc.conj(vk(kx,ky,1,1,p))*vk(kqx,kqy,-1,-1,p)
    pko=sc.conj(vk(kx,ky,1,1,p))*uk(kqx,kqy,-1,-1,p)+\
        sc.conj(uk(kx,ky,1,1,p))*vk(kqx,kqy,-1,-1,p)
    even=1-sc.mod(r[:,0]+r[:,1],2)
    odd=sc.mod(r[:,0]+r[:,1],2)
    ph=sc.exp(-2j*sc.pi*(sc.einsum('i,j->ij',kx,r[:,0])+sc.einsum('i,j->ij',ky,r[:,1])))
    pk=sc.einsum('ij,j,i->ij',ph,even,pke)+sc.einsum('ij,j,i->ij',ph,odd,pko)
    return pk
Ejemplo n.º 12
0
def barycoords(tri, faces, points):
    # Because python and matlab can have different point order within triangles, column order is not guaranteed
    # Faces should be in format triangle indices, points in npts x dim array
    X = tri.transform[faces, :-1]
    Y = points - tri.transform[faces, -1]
    b = sp.einsum('ijk,ik->ij', X, Y)
    return sp.c_[b, 1 - b.sum(axis=1)]
Ejemplo n.º 13
0
def pc_abd(a, b, d, params, model=1):
    warnings.filterwarnings('ignore')
    if not isinstance(a, collections.Iterable):
        a = np.array([a])
    elif type(a) != np.ndarray:
        a = np.array(a)

    if not isinstance(b, collections.Iterable):
        b = np.array([b])
    elif type(b) != np.ndarray:
        b = np.array(b)

    if not isinstance(d, collections.Iterable):
        d = np.array([d])
    elif type(d) != np.ndarray:
        d = np.array(d)

    c_ab_prob, val = pc_ab(a, b, params, model)
    d_c_prob, _ = pd_c(val, params, model)
    d_c_prob = d_c_prob[d, :].T
    prob = einsum('ijk,il->ijkl',
                  c_ab_prob,
                  d_c_prob,
                  optimize='optimal',
                  dtype=np.float64)
    prob /= prob.sum(axis=0)
    prob[np.where(prob < 0)] = 0
    prob[np.isnan(prob)] = 0
    return (prob, val)
Ejemplo n.º 14
0
 def loss( self, y, X, B ):
     """Residual in error"""
     N = len( y )
     tot = 0
     for (x_i, y_i) in zip( X, y ):
         tot += (einsum( "ijk,i,j,k", B, x_i, x_i, x_i) - y_i)**2
     return tot/N
Ejemplo n.º 15
0
def phiktrans(kx, ky, qx, qy, p, r=sc.zeros((1, 2))):
    """
    Returns phi[k,r] such that |q,r>=sum_k phi[k,r]|q,k>
    """
    kqx = kx - qx
    kqy = ky - qy
    pk = sc.zeros((sc.shape(kx)[0], sc.shape(r)[0]), complex)
    pke=sc.conj(uk(kx,ky,1,1,p))*uk(kqx,kqy,-1,-1,p)+\
        sc.conj(vk(kx,ky,1,1,p))*vk(kqx,kqy,-1,-1,p)
    pko=sc.conj(vk(kx,ky,1,1,p))*uk(kqx,kqy,-1,-1,p)+\
        sc.conj(uk(kx,ky,1,1,p))*vk(kqx,kqy,-1,-1,p)
    even = 1 - sc.mod(r[:, 0] + r[:, 1], 2)
    odd = sc.mod(r[:, 0] + r[:, 1], 2)
    ph = sc.exp(-2j * sc.pi * (sc.einsum('i,j->ij', kx, r[:, 0]) +
                               sc.einsum('i,j->ij', ky, r[:, 1])))
    pk = sc.einsum('ij,j,i->ij', ph, even, pke) + sc.einsum(
        'ij,j,i->ij', ph, odd, pko)
    return pk
Ejemplo n.º 16
0
def solve_with_moments(M1, M2, M3, K):
    W, Wt = get_whitener(M2, K)
    M3_ = sc.einsum('ijk,ia,jb,kc->abc', M3, W, W, W)

    #print "M3", M3
    pi_, M_, _, _ = candecomp(M3_, K)
    #print "mu", M_
    mu = Wt.dot(M_.dot(np.diag(pi_)))
    return mu
Ejemplo n.º 17
0
def solve_with_moments(M1, M2, M3, K):
    W, Wt = get_whitener( M2, K )
    M3_ = sc.einsum( 'ijk,ia,jb,kc->abc', M3, W, W, W )

    #print "M3", M3
    pi_, M_, _, _ = candecomp(M3_, K)
    #print "mu", M_
    mu = Wt.dot(M_.dot(np.diag(pi_)))
    return mu
Ejemplo n.º 18
0
def pc(params, model=1):
    prob, val = pc_ab(np.arange(params['amin'], params['amax'] + 1),
                      np.arange(params['bmin'], params['bmax'] + 1), params,
                      model)
    prob = einsum('ijk->i', prob) / \
           (params['amax'] - params['amin'] + 1) / \
           (params['bmax'] - params['bmin'] + 1)
    prob[np.where(prob < 0)] = 0
    prob[np.isnan(prob)] = 0
    return (prob, val)
Ejemplo n.º 19
0
def RenormalizeFactor(excfile,gsfile,channel=None,Nsamp=1,O=None,q=None):
    if not type(excfile)==list:
        excfile=[excfile]
    if not type(gsfile)==list:
        gsfile=[gsfile]
    exat=GetAttr(excfile[0])
    gsat=GetAttr(gsfile[0])
    L=exat['L']
    if q==None:
        q=sc.array([exat['qx'],exat['qy']])
    if 'phasex' in exat.keys():
        shift=sc.array([exat['phasex']/2.0,exat['phasey']/2.0])
    else:
        shift=sc.array([exat['phase_shift_x']/2.0,exat['phase_shift_y']/2.0])
    phi=exat['phi']
    neel=exat['neel']
    qx,qy,Sq=GetSq(gsfile)
    kx,ky=sf.fermisea(L,L,shift)
    qidx=ml.find((qx==q[0])*(qy==q[1]))
    if O==None:
        _,O,_,_=GetEigSys(excfile,Nsamp)
    pk=None
    sqq=None
    if channel==None:
        channel=exat['channel']
    if channel=='trans':
        pk=sc.squeeze(sf.phiktrans(kx,ky,q[0]/L,q[1]/L,[phi,neel]))
        sqq=sc.real(0.5*(Sq[0,1,qidx]+Sq[0,2,qidx]))
    elif channel=='long':
        pkup=sc.squeeze(sf.phiklong(kx,ky,q[0]/L,q[1]/L,1,[phi,neel]))
        pkdo=sc.squeeze(sf.phiklong(kx,ky,q[0]/L,q[1]/L,-1,[phi,neel]))
        if (q[0]/L==0.5 and q[1]/L==0.5) or (q[0]/L==0 and q[1]/L==0):
            pk=sc.zeros(2*sc.shape(pkup)[0]+1,complex)
        else:
            pk=sc.zeros(2*sc.shape(pkup)[0],complex)
        pk[0:2*sc.shape(pkup)[0]:2]=pkup
        pk[1:2*sc.shape(pkdo)[0]:2]=pkdo
        if (qx[0]/L==0.5 and q[1]/L==0.5) or (q[0]/L==0 and q[1]/L==0):
            if neel==0:
                pk[-1]=0
            else:
                pk[-1]=sum(neel/sf.omega(kx,ky,[phi,neel]))
        sqq=Sq[0,0,qidx]
    else:
        raise(InputFileError('In file \''+excfile+'\', channel=\''+str(channel)+'\'. Should be \'trans\' or \'long\''))
    sqe=sc.einsum('i,jik,k->j',sc.conj(pk),O,pk)
    out=sc.zeros(Nsamp)
    for n in range(Nsamp):
        if abs(sqq)<1e-6 or abs(sqe[n])<1e-6:
            warnings.warn('Probably ill-defined renormalization, returns 1 for sample {0} out of {1}'.format(n,Nsamp),UserWarning)
            out[n]=1
        else:
            out[n]=sc.real(sqq/sqe[n])
    return out
Ejemplo n.º 20
0
    def process(self, G, verbose=False):
        r"""
        Fit genotypes one-by-one.

        Parameters
        ----------
        G : (`N`, `S`) ndarray
            genotype vector for `N` individuals and `S` variants.
        verbose : bool
            verbose flag.
        """
        t0 = time.time()
        # precompute some stuff
        if self.cov == None: KiG = G
        else: KiG = self.cov.solve(G)
        GKiy = sp.dot(G.T, self.Kiy[:, 0])
        GKiG = sp.einsum('ij,ij->j', G, KiG)
        FKiG = sp.dot(self.F.T, KiG)

        # Let us denote the inverse of Areml as
        # Ainv = [[A0i + m mt / n, m], [mT, n]]
        A0iFKiG = sp.dot(self.A0i, FKiG)
        n = 1. / (GKiG - sp.einsum('ij,ij->j', FKiG, A0iFKiG))
        M = -n * A0iFKiG
        self.beta_F = self.beta_F0 + M * sp.dot(M.T, self.FKiy[:, 0]) / n
        self.beta_F += M * GKiy
        self.beta_g = sp.einsum('is,i->s', M, self.FKiy[:, 0])
        self.beta_g += n * GKiy

        # sigma
        s2 = self.yKiy - sp.einsum('i,is->s', self.FKiy[:, 0], self.beta_F)
        s2 -= GKiy * self.beta_g
        s2 /= self.df

        #dlml and pvs
        self.lrt = -self.df * sp.log(s2 / self.s20)
        self.pv = st.chi2(1).sf(self.lrt)

        t1 = time.time()
        if verbose:
            print('Tested for %d variants in %.2f s' % (G.shape[1], t1 - t0))
Ejemplo n.º 21
0
def sqwlongamp(V, O, Lx, Ly, q, shift, phi, neel):
    sqn = sc.zeros(sc.shape(V)[0:2], complex)
    kx, ky = fermisea(Lx, Ly, shift)
    pkup = phiklong(kx, ky, q[0], q[1], 1, [phi, neel])
    pkdo = phiklong(kx, ky, q[0], q[1], -1, [phi, neel])
    pk = sc.zeros(sc.shape(V)[1], complex)
    pk[0:2 * len(pkup):2] = pkup
    pk[1:2 * len(pkup):2] = pkdo
    if (abs(q[0])+abs(q[1]))<1e-6 or\
       (abs(q[0]-0.5)+abs(q[1]-0.5))<1e-6:
        if neel != 0:
            pk[-1] = sc.sum(neel / omega(kx, ky, [phi, neel]))
    sqn = abs(sc.einsum('ijk,ijl,l->ik', sc.conj(V), O, pk))**2
    return sqn
Ejemplo n.º 22
0
def test_mtmm_scan_pv_beta():
    import scipy as sp
    import scipy.linalg as la
    from limix_core.gp import GP2KronSum
    from limix_core.covar import FreeFormCov

    N = 200
    P = 4
    M = 2
    K = 2
    S = 10
    Y, F, G, B0, Cg0, Cn0 = _generate_data(N, P, K, S)
    A = sp.eye(P)
    Asnp = sp.rand(P, M)

    # compute eigenvalue decomp of RRM
    R = sp.dot(G, G.T)
    R /= R.diagonal().mean()
    R += 1e-4 * sp.eye(R.shape[0])
    Sr, Ur = la.eigh(R)

    # fit null model
    Cg = FreeFormCov(Y.shape[1])
    Cn = FreeFormCov(Y.shape[1])
    gp = GP2KronSum(Y=Y, S_R=Sr, U_R=Ur, Cg=Cg, Cn=Cn, F=F, A=sp.eye(P))
    gp.covar.Cg.setCovariance(0.5 * sp.cov(Y.T))
    gp.covar.Cn.setCovariance(0.5 * sp.cov(Y.T))
    gp.optimize(factr=10)

    # run MTLMM
    from limix_lmm import MTLMM

    mtlmm = MTLMM(Y, F=F, A=A, Asnp=Asnp, covar=gp.covar)
    pv, B = mtlmm.process(G)

    # run standard LMMcore
    from limix_lmm.lmm_core import LMMCore

    y = sp.reshape(Y, [Y.size, 1], order="F")
    covs = sp.kron(A, F)
    Aext = sp.kron(Asnp, sp.ones((G.shape[0], 1)))
    Gext = sp.kron(sp.ones((Asnp.shape[0], 1)), G)
    Wext = sp.einsum("ip,in->inp", Aext, Gext).reshape(Aext.shape[0], -1)
    stlmm = LMMCore(y, covs, Ki_dot=gp.covar.solve)
    stlmm.process(Wext, step=Asnp.shape[1])
    pv0 = stlmm.getPv()
    B0 = stlmm.getBetaSNP()

    assert_allclose(pv0, pv, rtol=1e-06, atol=1e-06)
    assert_allclose(B0, B, rtol=1e-06, atol=1e-06)
Ejemplo n.º 23
0
def sqwlongamp(V,O,Lx,Ly,q,shift,phi,neel):
    sqn=sc.zeros(sc.shape(V)[0:2],complex)
    kx,ky=fermisea(Lx,Ly,shift)
    pkup=phiklong(kx,ky,q[0],q[1],1,[phi,neel])
    pkdo=phiklong(kx,ky,q[0],q[1],-1,[phi,neel])
    pk=sc.zeros(sc.shape(V)[1],complex)
    pk[0:2*len(pkup):2]=pkup
    pk[1:2*len(pkup):2]=pkdo
    if (abs(q[0])+abs(q[1]))<1e-6 or\
       (abs(q[0]-0.5)+abs(q[1]-0.5))<1e-6:
        if neel!=0:
            pk[-1]=sc.sum(neel/omega(kx,ky,[phi,neel]))
    sqn=abs(sc.einsum('ijk,ijl,l->ik',sc.conj(V),O,pk))**2
    return sqn
Ejemplo n.º 24
0
def sqwtransamp(V,
                O,
                Lx,
                Ly,
                q,
                shift,
                phi,
                neel,
                r=sc.zeros((1, 2)),
                rp=sc.zeros((1, 2))):
    """
    Returns Sq[sample,r,rp,n]=<q,r|q,n><q,n|q,rp>
    """
    sqn = sc.zeros(sc.shape(V)[0:2], complex)
    kx, ky = fermisea(Lx, Ly, shift)
    pkrp = sc.zeros((sc.shape(V)[1], sc.shape(rp)[0]), complex)
    pkr = sc.zeros((sc.shape(V)[1], sc.shape(r)[0]), complex)
    pkrp[0:len(kx), :] = phiktrans(kx, ky, q[0], q[1], [phi, neel], rp)
    pkr[0:len(ky), :] = phiktrans(kx, ky, q[0], q[1], [phi, neel], r)
    OV = sc.einsum('ijk,ikl->ijl', O, V)
    rhs = sc.einsum('ijk,jl->ikl', sc.conj(OV), pkrp)
    lhs = sc.einsum('ij,kil->kjl', sc.conj(pkr), OV)
    sqn = sc.einsum('ijk,ikl->ijlk', lhs, rhs)
    return sqn
Ejemplo n.º 25
0
def rotate_wind(U,V,alpha):
    alpha = sp.array(alpha)*sp.pi/180
    alpha = alpha.flatten()
    R = sp.array([[sp.cos(alpha), -sp.sin(alpha)], [sp.sin(alpha), sp.cos(alpha)] ])
    shpe = U.shape
    origwind = sp.array((U.flatten(), V.flatten()))
    if len(R.shape)==2:
        rotwind = dot(R, origwind) # for constant rotation angle
    else:
        # for rotation angle given as array with same dimensions as U and V:
        # k-loop with rotwind(k) = dot(R(i,j,k), origwind(j,k)) (einstein summation indices)
        rotwind = sp.einsum("ijk,ik -> jk", R, origwind) 
    Urot ,Vrot = rotwind[0,:], rotwind[1,:]
    Urot = Urot.reshape(shpe)
    Vrot = Vrot.reshape(shpe)
    return Urot, Vrot
Ejemplo n.º 26
0
def solve_with_moments(m1, M2, M3, K):
    """
    Whiten and unwhiten appropriately
    """

    assert symmetric_skew(M2) < 1e-2
    assert symmetric_skew(M3) < 1e-2

    W, Wt = get_whitener( M2, K )
    M3_ = sc.einsum( 'ijk,ia,jb,kc->abc', M3, W, W, W )

    #print "M3", M3
    pi_, M_, _, _ = candecomp(M3_, K)
    #print "mu", M_
    mu = Wt.dot(M_.dot(diag(pi_)))
    return mu
Ejemplo n.º 27
0
def recover_B( k, y, X, iters = 50, alpha0 = 0.1, reg = 0, B20B30 = (None,None), B2B3 = (None, None) ):
    """Recover the mixture weights B"""
    B20, B30 = B20B30
    B2, B3 = B2B3

    # Use convex optimisation to recover B2 and B3
    B2_ = PhaseRecovery().solve( y**2, X, B0 = B20, alpha = "1/sqrt(T)", alpha0 = alpha0, iters = iters, reg = reg, verbose = False )
    print norm( B20 - B2 ), norm( B2_ - B2 ) 

    B3_ = TensorRecovery().solve( y**3, X, B0 = B30, alpha = "1/sqrt(T)", alpha0 = alpha0, iters = iters, reg = reg, verbose = False )
    print norm( B30 - B3 ), norm( B3_ - B3 ) 

    B3_ = lambda theta: sc.einsum( 'abj,j->ab', B3, theta )

    B = recover_M3( k, B2, B2, B3_ )

    return B, B2, B3
Ejemplo n.º 28
0
def gaussians(x,x0,A,sig):
    #if sc.amax(abs(sc.imag(A)))/sc.amax(abs(sc.real(A)))>0.01:
    #    warnings.warn(\
    #'Gaussian amplitude has a sizable imaginary part\(max(|Im|)/max(|Re|)={0}, mean(abs(A))={1}).'\
    #        .format(sc.amax(abs(sc.imag(A)))/sc.amax(abs(sc.real(A))), sc.mean(abs(A))))
    x0=sc.atleast_1d(x0)
    A=sc.atleast_1d(A)
    sig=sc.atleast_1d(sig)
    amp=A*sc.sqrt(1/2.0/sc.pi)/sig
    [X,X0]=sc.meshgrid(x,x0)
    gg=None
    #if len(sc.shape(amp))==1:
    #    gg=sc.einsum('i,ij',amp,sc.exp(-0.5*(X-X0)**2/sc.tile(sig**2,(sc.shape(x)[0],1)).T))
    #elif len(sc.shape(amp))==2:
    #    gg=sc.einsum('ij,jk',amp,sc.exp(-0.5*(X-X0)**2/sc.tile(sig**2,(sc.shape(x)[0],1)).T))
    gg=sc.einsum('...i,...ij->...j',amp,sc.exp(-0.5*(X-X0)**2/sc.tile(sig**2,(sc.shape(x)[0],1)).T))
    return gg
Ejemplo n.º 29
0
def rotate_vectorfield(U,V,alpha):
    '''rotate wind vectors clockwise. alpha may be a scalar or an array
	alpha is in degrees
	returns u,v '''
    alpha = sp.array(alpha)*sp.pi/180
    alpha = alpha.flatten()
    R = sp.array([[sp.cos(alpha), -sp.sin(alpha)], [sp.sin(alpha), sp.cos(alpha)] ])
    shpe = U.shape
    origwind = sp.array((U.flatten(), V.flatten()))
    if len(R.shape)==2:
        rotwind = dot(R, origwind) # for constant rotation angle
    else:
        # for rotation angle given as array with same dimensions as U and V:
        # k-loop with rotwind(k) = dot(R(i,j,k), origwind(j,k)) (einstein summation indices)
        rotwind = sp.einsum("ijk,ik -> jk", R, origwind)  # einstein summation indices
    Urot ,Vrot = rotwind[0,:], rotwind[1,:]
    Urot = Urot.reshape(shpe)
    Vrot = Vrot.reshape(shpe)
    return Urot, Vrot
Ejemplo n.º 30
0
def rotate_vectorfield(U,V,alpha):
    '''rotate wind vectors clockwise. alpha may be a scalar or an array
	alpha is in degrees
	returns u,v '''
    alpha = sp.array(alpha)*sp.pi/180
    alpha = alpha.flatten()
    R = sp.array([[sp.cos(alpha), -sp.sin(alpha)], [sp.sin(alpha), sp.cos(alpha)] ])
    shpe = U.shape
    origwind = sp.array((U.flatten(), V.flatten()))
    if len(R.shape)==2:
        rotwind = dot(R, origwind) # for constant rotation angle
    else:
        # for rotation angle given as array with same dimensions as U and V:
        # k-loop with rotwind(k) = dot(R(i,j,k), origwind(j,k)) (einstein summation indices)
        rotwind = sp.einsum("ijk,ik -> jk", R, origwind)  # einstein summation indices
    Urot ,Vrot = rotwind[0,:], rotwind[1,:]
    Urot = Urot.reshape(shpe)
    Vrot = Vrot.reshape(shpe)
    return Urot, Vrot
Ejemplo n.º 31
0
def gaussians(x, x0, A, sig):
    #if sc.amax(abs(sc.imag(A)))/sc.amax(abs(sc.real(A)))>0.01:
    #    warnings.warn(\
    #'Gaussian amplitude has a sizable imaginary part\(max(|Im|)/max(|Re|)={0}, mean(abs(A))={1}).'\
    #        .format(sc.amax(abs(sc.imag(A)))/sc.amax(abs(sc.real(A))), sc.mean(abs(A))))
    x0 = sc.atleast_1d(x0)
    A = sc.atleast_1d(A)
    sig = sc.atleast_1d(sig)
    amp = A * sc.sqrt(1 / 2.0 / sc.pi) / sig
    [X, X0] = sc.meshgrid(x, x0)
    gg = None
    #if len(sc.shape(amp))==1:
    #    gg=sc.einsum('i,ij',amp,sc.exp(-0.5*(X-X0)**2/sc.tile(sig**2,(sc.shape(x)[0],1)).T))
    #elif len(sc.shape(amp))==2:
    #    gg=sc.einsum('ij,jk',amp,sc.exp(-0.5*(X-X0)**2/sc.tile(sig**2,(sc.shape(x)[0],1)).T))
    gg = sc.einsum(
        '...i,...ij->...j', amp,
        sc.exp(-0.5 * (X - X0)**2 / sc.tile(sig**2, (sc.shape(x)[0], 1)).T))
    return gg
Ejemplo n.º 32
0
def solve_mixture_model(model, data):
    """
    Whiten and unwhiten appropriately
    """

    d = model["d"]

    # Get moments
    moments = model.empirical_moments(data, model.observed_monomials(3))
    M2 = zeros((d, d))
    M3 = zeros((d, d, d))

    for i in xrange(d):
        for j in xrange(d):
            xij = sp.sympify('x%d * x%d' % (i + 1, j + 1))
            M2[i, j] = moments[xij]

            for k in xrange(d):
                xijk = sp.sympify('x%d * x%d * x%d' % (i + 1, j + 1, k + 1))
                M3[i, j, k] = moments[xijk]

    k = model["k"]
    # Symmetrize
    M2, M3 = symmetrize(M2), symmetrize(M3)

    assert symmetric_skew(M2) < 1e-2
    assert symmetric_skew(M3) < 1e-2

    # Whiten
    W, Wt = get_whitener(M2, k)
    M3_ = einsum('ijk,ia,jb,kc->abc', M3, W, W, W)

    pi_, M_, _, _ = candecomp(M3_, k)

    # Unwhiten M
    M_ = Wt.dot(M_.dot(diag(pi_)))
    pi_ = 1. / pi_**2
    # "Project" onto simplex
    pi_ = make_distribution(abs(pi_))
    M_ = array([make_distribution(col) for col in M_.T]).T

    return pi_, M_
Ejemplo n.º 33
0
def solve_mixture_model(model, data):
    """
    Whiten and unwhiten appropriately
    """

    d = model["d"]

    # Get moments
    moments = model.empirical_moments(data, model.observed_monomials(3))
    M2 = zeros((d, d))
    M3 = zeros((d, d, d))

    for i in xrange(d):
        for j in xrange(d):
            xij = sp.sympify('x%d * x%d' %(i+1, j+1))
            M2[i,j] = moments[xij]

            for k in xrange(d):
                xijk = sp.sympify('x%d * x%d * x%d' % (i+1, j+1, k+1))
                M3[i,j,k] = moments[xijk]

    k = model["k"]
    # Symmetrize
    M2, M3 = symmetrize(M2), symmetrize(M3)

    assert symmetric_skew(M2) < 1e-2
    assert symmetric_skew(M3) < 1e-2

    # Whiten
    W, Wt = get_whitener(M2, k)
    M3_ = einsum('ijk,ia,jb,kc->abc', M3, W, W, W)

    pi_, M_, _, _ = candecomp(M3_, k)

    # Unwhiten M
    M_ = Wt.dot(M_.dot(diag(pi_)))
    pi_ = 1./pi_**2
    # "Project" onto simplex
    pi_ = make_distribution(abs(pi_))
    M_ = array([make_distribution(col) for col in M_.T]).T

    return pi_, M_
Ejemplo n.º 34
0
def test_solve_exact(samples = 1e4, iters = 1e2):
    K = 2
    d = 3
    N = samples

    pi = array( [0.5, 0.5] ) 
    B = eye( d, K )
    B3 = sum( [ pi[i] * tensorify(B.T[i], B.T[i], B.T[i] ) for i in xrange(K) ] )

    X = sc.randn( N, d )
    y = array( [ einsum( "ijk,i,j,k", B3, x, x, x ) for x in X ] )

    algo = TensorRecovery()
    B3_ = algo.solve( y, X, iters = iters, alpha0 = 0.01, eps=1e-5, reg = 1e-3 )

    _, _, V = HOSVD( B3 )
    print algo.loss( y, X, B3 ), V

    __, _, V_ = HOSVD( B3_ )
    print algo.loss( y, X, B3_ ), V_
    print norm(B3 - B3_)/norm(B3)
    
    assert norm(B3 - B3_)/norm(B3) < 1e-1
Ejemplo n.º 35
0
def RenormalizeFactor(excfile, gsfile, channel=None, Nsamp=1, O=None, q=None):
    if not type(excfile) == list:
        excfile = [excfile]
    if not type(gsfile) == list:
        gsfile = [gsfile]
    exat = GetAttr(excfile[0])
    gsat = GetAttr(gsfile[0])
    L = exat['L']
    if q == None:
        q = sc.array([exat['qx'], exat['qy']])
    if 'phasex' in exat.keys():
        shift = sc.array([exat['phasex'] / 2.0, exat['phasey'] / 2.0])
    else:
        shift = sc.array(
            [exat['phase_shift_x'] / 2.0, exat['phase_shift_y'] / 2.0])
    phi = exat['phi']
    neel = exat['neel']
    qx, qy, Sq = GetSq(gsfile)
    kx, ky = sf.fermisea(L, L, shift)
    qidx = ml.find((qx == q[0]) * (qy == q[1]))
    if O == None:
        _, O, _, _ = GetEigSys(excfile, Nsamp)
    pk = None
    sqq = None
    if channel == None:
        channel = exat['channel']
    if channel == 'trans':
        pk = sc.squeeze(sf.phiktrans(kx, ky, q[0] / L, q[1] / L, [phi, neel]))
        sqq = sc.real(0.5 * (Sq[0, 1, qidx] + Sq[0, 2, qidx]))
    elif channel == 'long':
        pkup = sc.squeeze(
            sf.phiklong(kx, ky, q[0] / L, q[1] / L, 1, [phi, neel]))
        pkdo = sc.squeeze(
            sf.phiklong(kx, ky, q[0] / L, q[1] / L, -1, [phi, neel]))
        if (q[0] / L == 0.5 and q[1] / L == 0.5) or (q[0] / L == 0
                                                     and q[1] / L == 0):
            pk = sc.zeros(2 * sc.shape(pkup)[0] + 1, complex)
        else:
            pk = sc.zeros(2 * sc.shape(pkup)[0], complex)
        pk[0:2 * sc.shape(pkup)[0]:2] = pkup
        pk[1:2 * sc.shape(pkdo)[0]:2] = pkdo
        if (qx[0] / L == 0.5 and q[1] / L == 0.5) or (q[0] / L == 0
                                                      and q[1] / L == 0):
            if neel == 0:
                pk[-1] = 0
            else:
                pk[-1] = sum(neel / sf.omega(kx, ky, [phi, neel]))
        sqq = Sq[0, 0, qidx]
    else:
        raise (InputFileError('In file \'' + excfile + '\', channel=\'' +
                              str(channel) +
                              '\'. Should be \'trans\' or \'long\''))
    sqe = sc.einsum('i,jik,k->j', sc.conj(pk), O, pk)
    out = sc.zeros(Nsamp)
    for n in range(Nsamp):
        if abs(sqq) < 1e-6 or abs(sqe[n]) < 1e-6:
            warnings.warn(
                'Probably ill-defined renormalization, returns 1 for sample {0} out of {1}'
                .format(n, Nsamp), UserWarning)
            out[n] = 1
        else:
            out[n] = sc.real(sqq / sqe[n])
    return out
Ejemplo n.º 36
0
def GetEigSys(filename,
              gsfile=None,
              Nsamp=1,
              channel=None,
              wavefile=None,
              q=None):
    if type(filename) == str:
        filename = [filename]
    hfile = h5py.File(filename[0], 'r')
    attr = GetAttr(filename[0])
    if channel == None:
        channel = attr['channel']
    dpath, args = GetStat(filename, Nsamp)
    dat = sc.array(hfile["/rank-1/data-0"])
    hfile.close()
    N = int(sc.shape(dat)[0] / 2)
    L = attr['L']
    shift = None
    if 'phasex' in attr.keys():
        shift = [attr['phasex'] / 2.0, attr['phasey'] / 2.0]
    else:
        shift = [attr['phase_shift_x'] / 2.0, attr['phase_shift_y'] / 2.0]
    H = sc.zeros([Nsamp, N, N], complex)
    O = sc.zeros([Nsamp, N, N], complex)
    E = sc.zeros([Nsamp, N])
    V = sc.zeros([Nsamp, N, N], complex)
    for sample, b in enumerate(args):
        for d in b:
            hfile = h5py.File(dpath[d][0], 'r')
            dat = hfile[dpath[d][1]]
            H[sample, :, :] += dat[0:N, 0:2 * N:2] + 1j * dat[0:N, 1:2 * N:2]
            O[sample, :, :] += dat[N:2 * N,
                                   0:2 * N:2] + 1j * dat[N:2 * N, 1:2 * N:2]
            hfile.close()
        H[sample, :, :] = 0.5 * (H[sample, :, :] +
                                 sc.conj(H[sample, :, :].T)) / len(b)
        O[sample, :, :] = 0.5 * (O[sample, :, :] +
                                 sc.conj(O[sample, :, :].T)) / len(b)
    if channel == 'groundstate':
        return H
    fs = None
    refstate = sc.zeros(2 * L * L)
    refstate[0::2] = 1
    if wavefile == None:
        fs = GetFermiSigns(filename[0], refstate, channel=channel)
    else:
        fs = GetFermiSigns(wavefile, refstate, channel=channel)
    for s in range(sc.shape(H)[0]):
        H[s, :, :] = sc.dot(sc.diag(fs), sc.dot(H[s, :, :], sc.diag(fs)))
        O[s, :, :] = sc.dot(sc.diag(fs), sc.dot(O[s, :, :], sc.diag(fs)))
    ren = sc.ones(Nsamp)
    if gsfile != None:
        ren = RenormalizeFactor(filename,
                                gsfile,
                                Nsamp=1,
                                channel=channel,
                                O=O,
                                q=q)
    print('{0} pair of (H,O) matrices loaded, now diagonalize'.format(
        sc.shape(H)[0]))
    H = sc.einsum('ijk,i->ijk', H, ren)
    O = sc.einsum('ijk,i->ijk', O, ren)
    for s in range(sc.shape(H)[0]):
        E[s, :], V[s, :, :] = vln.geneigh(sc.squeeze(H[s, :, :]),
                                          sc.squeeze(O[s, :, :]))
    print('diagonalization finished')
    return H, O, E, V
Ejemplo n.º 37
0
 # H = 0.5 * trace_term - quadratic_term
 # expected_H = -0.5 * trace_term
 # average_H = quadratic_term
 # 1. trace_term = tr(Ki_dKp_Ki_dKp)
 rankCr = 2
 T = []
 KiT = []
 for i in range(3):
     _S, _U = la.eigh(_Cr.K_grad_i(i))
     Cr_h = _U * sp.sqrt(_S)
     T.append(
         sp.reshape(sp.kron(Cr_h, Xr), (N, P, rankCr * S), order='F'))
     KiT.append(gp.covar.solve_t(T[i]))
 Ht = sp.zeros((3, 3))
 for i in range(3):
     Ht[i, i] = (sp.einsum('qpn,qpm->nm', T[i], KiT[i])**2).sum()
     for j in range(0, i):
         Ht[i, j] = (sp.einsum('qpn,qpm->nm', T[i], KiT[j])**2).sum()
         Ht[j, i] = Ht[i, j]
 if Y.shape[0] <= 1000:
     Ki = la.inv(
         sp.kron(mvset.gp[type].covar.Cn.K(), sp.eye(Y.shape[0])))
     XrXr = sp.dot(Xr, Xr.T)
     KidK = [
         sp.dot(Ki, sp.kron(_Cr.K_grad_i(i), XrXr)) for i in range(3)
     ]
     Ht0 = sp.zeros((3, 3))
     for i in range(3):
         for j in range(3):
             Ht0[i, j] = sp.trace(sp.dot(KidK[i], KidK[j]))
     pdb.set_trace()
Ejemplo n.º 38
0
def transspinonoverlap(O,V,Lx,Ly,q,shift,phi,neel,r):
    kx,ky=fermisea(Lx,Ly,shift)
    pkr=phiktrans(kx,ky,q[0],q[1],[phi,neel],r)
    ork=sc.einsum('ij,kil->kjl',sc.conj(pkr),O)
    return sc.einsum('kil,klm->kim',ork,V)
Ejemplo n.º 39
0
Archivo: mvSet.py Proyecto: PMBio/limix
    if 0:
        # H = 0.5 * trace_term - quadratic_term
        # expected_H = -0.5 * trace_term
        # average_H = quadratic_term
        # 1. trace_term = tr(Ki_dKp_Ki_dKp)
        rankCr = 2
        T = []
        KiT = []
        for i in range(3):
            _S, _U = la.eigh(_Cr.K_grad_i(i))
            Cr_h = _U*sp.sqrt(_S)
            T.append(sp.reshape(sp.kron(Cr_h, Xr), (N,P,rankCr*S), order='F'))
            KiT.append(gp.covar.solve_t(T[i]))
        Ht = sp.zeros((3,3))
        for i in range(3):
            Ht[i,i] = (sp.einsum('qpn,qpm->nm', T[i], KiT[i])**2).sum() 
            for j in range(0,i):
                Ht[i,j] = (sp.einsum('qpn,qpm->nm', T[i], KiT[j])**2).sum()
                Ht[j,i] = Ht[i,j] 
        if Y.shape[0]<=1000:
            Ki = la.inv(sp.kron(mvset.gp[type].covar.Cn.K(), sp.eye(Y.shape[0])))
            XrXr = sp.dot(Xr, Xr.T)
            KidK = [sp.dot(Ki, sp.kron(_Cr.K_grad_i(i), XrXr)) for i in range(3)]
            Ht0 = sp.zeros((3,3))
            for i in range(3):
                for j in range(3):
                    Ht0[i,j] = sp.trace(sp.dot(KidK[i], KidK[j]))
            pdb.set_trace()

    if 0:
        # 2. quadratic_term = y_Ki_dKp_Ki_dKq_Ki_y
Ejemplo n.º 40
0
def transspinonoverlap(O, V, Lx, Ly, q, shift, phi, neel, r):
    kx, ky = fermisea(Lx, Ly, shift)
    pkr = phiktrans(kx, ky, q[0], q[1], [phi, neel], r)
    ork = sc.einsum('ij,kil->kjl', sc.conj(pkr), O)
    return sc.einsum('kil,klm->kim', ork, V)
Ejemplo n.º 41
0
 def get_yKiy(self):
     return sp.einsum("ip,ip->", self.LY, self._Y)
Ejemplo n.º 42
0
 def _pdf_single(self, x):
     distance = self.X_arr - x
     cov_distance = sp.einsum("ij,ijk,ik->i",
                              distance, self.inv_covs, distance)
     return sp.average(sp.exp(-.5 * cov_distance) / self.normalization,
                       weights=self.w)