Ejemplo n.º 1
0
 def fittedAlphaFunctionAlternate(self,opticalDensity):
     """using polyfit function with a cubic we get a reasonable approximation to
     alpha as a function of optical density. I force alpha to 1 at optical density < 0.5. 
     Function uses poly1d object so is good for arrays"""
     lowODLimit = 0.5
     highODPolynomial = scipy.poly1d([0.2496, -0.5873, 0.3939,1.572])
     lowODPolynomial = scipy.poly1d([2*(highODPolynomial(lowODLimit)-1),1.0])
     return scipy.piecewise(opticalDensity, [opticalDensity<lowODLimit,opticalDensity>=lowODLimit],[lowODPolynomial,highODPolynomial])
Ejemplo n.º 2
0
 def evaluate(t, kernel_size):
     return sp.piecewise(t, [t < 0, t >= 0], [
         lambda t: 0, lambda t: sp.exp(
             (-t * pq.dimensionless / kernel_size).simplified)
     ])
Ejemplo n.º 3
0
 def evaluate(t, kernel_size):
     return sp.piecewise(
         t, [t < 0, t >= 0], [
             lambda t: 0,
             lambda t: sp.exp(
                 (-t * pq.dimensionless / kernel_size).simplified)])
Ejemplo n.º 4
0
def get_ramp(x0, x1, vmax, a, dt, output='ramp only'):
    """
    Generate a ramp trajectory from x0 to x1 with constant
    acceleration, a, to maximum velocity v_max. 

    Note, the main purlpose of this routine is to generate a
    trajectory from x0 to x1. For this reason v_max and a are adjusted
    slightly to work with the given time step.

    Arguments:
     x0 = starting position
     x1 = ending position
     vmax = maximum allowed velocity
     a = constant acceleration
     
     Keywords:
       output = 'ramp only' or 'full'
       when ramp only is selected then only the velocity ramp is returned. 
       If 'full' is selected the adjusted acceleration and maximum velocity 
       are also returned.
       
    Ouput:
      ramp = ramp trajectory form x0 to x1


    """
    # Insure we are dealing with floating point numbers
    x0, x1 = float(x0), float(x1)
    vmax, a = float(vmax), float(a)
    dt = float(dt)
    vmax, a = abs(vmax), abs(a)  # Make sure that v_max and a are positive

    # Check to see if there is anything to do
    if x0 == x1:
        return scipy.array([x0])

    # Get distance and sign indicating direction
    dist = abs(x1 - x0)
    sign = scipy.sign(x1 - x0)

    # Determine if we will reach v_max
    t2vmax = vmax / a
    t2halfdist = scipy.sqrt(0.5 * dist / a)

    if t2vmax > t2halfdist:
        # Trajectory w/o constant velocity segment
        T = scipy.sqrt(dist / a)
        n = int(scipy.round_((1.0 / dt) * T))

        # Adjust accel and duration for rounding of n (discrete time steps)
        a = dist / (n * dt)**2
        T = scipy.sqrt(dist / a)

        # Generate trajectory
        t = scipy.linspace(0.0, 2.0 * T, 2 * n + 1)

        def f1(t):
            return 0.5 * sign * a * (t**2)

        def f2(t):
            s = t - T
            return f1(T) + sign * a * T * s - 0.5 * sign * a * s**2

        func_list = [f1, f2]
        cond_list = [t <= T, t > T]
        ramp = x0 + scipy.piecewise(t, cond_list, func_list)

    else:
        # Trajectory w/ constant velocity segment
        # Compute acceleration time and adjust acceleration
        T1 = vmax / a
        n = int(scipy.round_(T1 / dt))
        a = vmax / (n * dt)  # Adjusted acceleration
        T1 = vmax / a  # Adjusted acceleration time

        # Compute and adjust constant velocity time
        T2 = dist / vmax - T1
        m = int(scipy.round_(T2 / dt))
        vmax = dist / (dt * (n + m))  # Adjusted max velocity
        T2 = dist / vmax - T1  # Adjusted constant velocity time

        # Generate trajectory
        t = scipy.linspace(0.0, 2.0 * T1 + T2, 2 * n + m + 1)

        def f1(t):
            return 0.5 * sign * a * (t**2)

        def f2(t):
            s = t - T1
            return f1(T1) + sign * vmax * s

        def f3(t):
            s = t - T1 - T2
            return f2(T1 + T2) + sign * vmax * s - 0.5 * sign * a * s**2

        func_list = [f1, f2, f3]
        cond_list = [
            t <= T1,
            scipy.logical_and(t > T1, t <= T1 + T2), t > T1 + T2
        ]
        ramp = x0 + scipy.piecewise(t, cond_list, func_list)

    if output == 'ramp only':
        return ramp
    elif output == 'full':
        return ramp, vmax, a
    else:
        raise ValueError, 'unknown keyword option output=%s' % (output, )