Ejemplo n.º 1
0
 def run_workers(self):
     ''' Run allworkers -- parallelized if each sim is not parallelized '''
     if self.n_workers == 1:
         self.worker()
     else:
         sc.parallelize(self.worker, self.n_workers)
     return
Ejemplo n.º 2
0
def multi_run(orig_sim, n=4, verbose=None):
    ''' Ditto, for multiple runs '''

    # Copy the simulations
    sims = []
    for i in range(n):
        new_sim = sc.dcp(orig_sim)
        new_sim.pars['seed'] += i  # Reset the seed, otherwise no point!
        new_sim.pars['n'] = int(new_sim.pars['n'] /
                                n)  # Reduce the population size accordingly
        sims.append(new_sim)

    finished_sims = sc.parallelize(single_run, iterarg=sims)

    output_sim = sc.dcp(finished_sims[0])
    output_sim.pars['parallelized'] = n  # Store how this was parallelized
    output_sim.pars[
        'n'] *= n  # Restore this since used in later calculations -- a bit hacky, it's true

    for sim in finished_sims[1:]:  # Skip the first one
        output_sim.people.update(sim.people)
        for key, val in sim.results.items():
            if key != 't':
                output_sim.results[key] += sim.results[key]

    return output_sim
Ejemplo n.º 3
0
 def evaluate_samples(self):
     ''' Actually evaluate the objective function -- copied from shell_step.py '''
     if not self.parallelize:
         for s,sample in enumerate(self.samples):
             self.values[s] = self.func(sample, **self.func_args) # This is the time-consuming step!!
     else:
         valueslist = sc.parallelize(self.func, iterarg=self.samples, kwargs=self.func_args, **self.parallel_args)
         self.values = np.array(valueslist, dtype=float)
     self.allsamples = np.concatenate([self.allsamples, self.samples])
     self.allvalues = np.concatenate([self.allvalues, self.values])
     return
Ejemplo n.º 4
0
 def evaluate(self):
     ''' Actually evaluate the objective function '''
     self.results = np.zeros(self.mp.N)
     if not self.parallelize:
         for s, sample in enumerate(self.samples):
             self.results[s] = self.func(
                 sample,
                 **self.func_args)  # This is the time-consuming step!!
     else:
         resultslist = sc.parallelize(self.func,
                                      iterarg=self.samples,
                                      kwargs=self.func_args,
                                      **self.parallel_args)
         self.results = np.array(resultslist, dtype=float)
     self.allresults[self.key] = sc.dcp(self.results)
     self.fvals[self.iteration, :] = self.results
     return self.results
Ejemplo n.º 5
0
# Run in series
if run_series:
    sc.tic()
    data = []
    for noiseval in noisevals:
        output = randgen(noiseval)
        data.append(output)
    sc.toc()

# Run in parallel -- manual way
if run_manual:
    sc.tic() 
    multipool = mp.Pool(processes=mp.cpu_count())
    data = multipool.map(randgen, noisevals)
    multipool.close()
    multipool.join()
    sc.toc()

# Run in parallel -- easy way
if run_sciris:
    sc.tic() 
    data = sc.parallelize(randgen, noisevals)
    sc.toc()

# Create 3D plot
if do_plot:
    sc.surf3d(pl.array(data))



Ejemplo n.º 6
0
    sim = covid_abm.Sim()
    sim.pars['r_contact'] = args.r
    sim.pars['incub'] = args.incub
    loglike = sim.likelihood(verbose=0)
    output = sc.objdict({'i': args.i, 'j': args.j, 'loglike': loglike})
    return output


arglist = []
results = pl.zeros((n_r, n_incub))
for i, r in enumerate(r_vec):
    for j, incub in enumerate(i_vec):
        args = sc.objdict({'i': i, 'j': j, 'r': r, 'incub': incub})
        arglist.append(args)

tmp_results = sc.parallelize(run_sim, iterarg=arglist)
for tmp in tmp_results:
    results[tmp.i, tmp.j] = tmp.loglike

sc.toc()

#%% Plotting
pl.figure(figsize=(12, 8))
delta_r = (r_vec[1] - r_vec[0]) / 2
delta_i = (i_vec[1] - i_vec[0]) / 2
plot_r_vec = pl.hstack([r_vec - delta_r, r_vec[-1] + delta_r
                        ]) * 30 * 3  # TODO: estimate better from sim
plot_i_vec = pl.hstack([i_vec - delta_i, i_vec[-1] + delta_i])
pl.pcolormesh(plot_i_vec, plot_r_vec, results, cmap=sc.parulacolormap())
# pl.imshow(results)
pl.colorbar()
Ejemplo n.º 7
0
import sciris as sc
import pylab as pl

torun = ['simple', 'embarrassing', 'multiargs', 'noniterated', 'parallelcmd']

if 'doplot' not in locals(): doplot = True

if __name__ == '__main__':

    #Example 1 -- simple usage as a shortcut to multiprocessing.map():
    if 'simple' in torun:

        def f(x):
            return x * x

        results = sc.parallelize(f, [1, 2, 3])
        print(results)

    #Example 2 -- simple usage for "embarrassingly parallel" processing:
    if 'embarrassing' in torun:

        def rnd():
            import pylab as pl
            return pl.rand()

        results = sc.parallelize(rnd, 10)
        print(results)

    #Example 3 -- using multiple arguments:
    if 'multiargs' in torun:
Ejemplo n.º 8
0
def multi_run(sim,
              n_runs=4,
              noise=0.0,
              noisepar=None,
              iterpars=None,
              verbose=None,
              combine=False,
              keep_people=None,
              run_args=None,
              sim_args=None,
              **kwargs):
    '''
    For running multiple runs in parallel. If the first argument is a list of sims,
    exactly these will be run and most other arguments will be ignored.

    Args:
        sim (Sim or list): the sim instance to be run, or a list of sims.
        n_runs (int): the number of parallel runs
        noise (float): the amount of noise to add to each run
        noisepar (string): the name of the parameter to add noise to
        iterpars (dict): any other parameters to iterate over the runs; see sc.parallelize() for syntax
        verbose (int): detail to print
        combine (bool): whether or not to combine all results into one sim, rather than return multiple sim objects
        keep_people (bool): whether or not to keep the people in each sim
        run_args (dict): arguments passed to sim.run()
        sim_args (dict): extra parameters to pass to the sim
        kwargs (dict): also passed to the sim

    Returns:
        If combine is True, a single sim object with the combined results from each sim.
        Otherwise, a list of sim objects (default).

    **Example**::

        import covasim as cv
        sim = cv.Sim()
        sims = cv.multi_run(sim, n_runs=6, noise=0.2)
    '''

    # Create the sims
    if sim_args is None:
        sim_args = {}

    # Handle iterpars
    if iterpars is None:
        iterpars = {}
    else:
        n_runs = None  # Reset and get from length of dict instead
        for key, val in iterpars.items():
            new_n = len(val)
            if n_runs is not None and new_n != n_runs:
                raise ValueError(
                    f'Each entry in iterpars must have the same length, not {n_runs} and {len(val)}'
                )
            else:
                n_runs = new_n

    # Run the sims
    if isinstance(sim, cvs.Sim):  # Normal case: one sim
        iterkwargs = {'ind': np.arange(n_runs)}
        iterkwargs.update(iterpars)
        kwargs = {
            'sim': sim,
            'noise': noise,
            'noisepar': noisepar,
            'verbose': verbose,
            'keep_people': keep_people,
            'sim_args': sim_args,
            'run_args': run_args
        }
        sims = sc.parallelize(single_run, iterkwargs=iterkwargs, kwargs=kwargs)
    elif isinstance(sim, list):  # List of sims
        iterkwargs = {'sim': sim}
        kwargs = {
            'verbose': verbose,
            'keep_people': keep_people,
            'sim_args': sim_args,
            'run_args': run_args
        }
        sims = sc.parallelize(single_run, iterkwargs=iterkwargs, kwargs=kwargs)
    else:
        errormsg = f'Must be Sim object or list, not {type(sim)}'
        raise TypeError(errormsg)

    # Usual case -- return a list of sims
    if not combine:
        return sims

    # Or, combine them into a single sim with scaled results
    else:
        output_sim = sc.dcp(sims[0])
        output_sim.parallelized = {
            'parallelized': True,
            'combined': True,
            'n_runs': n_runs
        }  # Store how this was parallelized
        output_sim['pop_size'] *= n_runs  # Record the number of people

        for s, sim in enumerate(sims[1:]):  # Skip the first one
            if keep_people:
                output_sim.people += sim.people
            for key in sim.result_keys():
                this_res = sim.results[key]
                output_sim.results[key].values += this_res.values

        # For non-count results (scale=False), rescale them
        for key in output_sim.result_keys():
            if not output_sim.results[key].scale:
                output_sim.results[key].values /= len(sims)

        return output_sim
Ejemplo n.º 9
0
def multi_run(sim, n_runs=4, noise=0.0, noisepar=None, iterpars=None, verbose=None, combine=False, run_args=None, sim_args=None, **kwargs):
    '''
    For running multiple runs in parallel.

    Args:
        sim (Sim): the sim instance to be run
        n_runs (int): the number of parallel runs
        noise (float): the amount of noise to add to each run
        noisepar (string): the name of the parameter to add noise to
        iterpars (dict): any other parameters to iterate over the runs; see sc.parallelize() for syntax
        verbose (int): detail to print
        combine (bool): whether or not to combine all results into one sim, rather than return multiple sim objects
        run_args (dict): arguments passed to sim.run()
        sim_args (dict): extra parameters to pass to the sim
        kwargs (dict): also passed to the sim

    Returns:
        if combine:
            a single sim object with the combined results from each sim
        else (default):
            a list of sim objects

    Example:
        import covasim as cv
        sim = cv.Sim()
        sims = cv.multi_run(sim, n_runs=6, noise=0.2)
    '''

    # Create the sims
    if sim_args is None:
        sim_args = {}

    # Handle iterpars
    if iterpars is None:
        iterpars = {}
    else:
        n_runs = None # Reset and get from length of dict instead
        for key,val in iterpars.items():
            new_n = len(val)
            if n_runs is not None and new_n != n_runs:
                raise ValueError(f'Each entry in iterpars must have the same length, not {n_runs} and {len(val)}')
            else:
                n_runs = new_n

    # Copy the simulations
    iterkwargs = {'ind':np.arange(n_runs)}
    iterkwargs.update(iterpars)
    kwargs = {'sim':sim, 'noise':noise, 'noisepar':noisepar, 'verbose':verbose, 'sim_args':sim_args, 'run_args':run_args}
    sims = sc.parallelize(single_run, iterkwargs=iterkwargs, kwargs=kwargs)

    # Usual case -- return a list of sims
    if not combine:
        return sims

    # Or, combine them into a single sim with scaled results
    else:
        output_sim = sc.dcp(sims[0])
        output_sim.pars['parallelized'] = n_runs # Store how this was parallelized
        output_sim.pars['n'] *= n_runs # Restore this since used in later calculations -- a bit hacky, it's true
        for s,sim in enumerate(sims[1:]): # Skip the first one
            output_sim.people.update(sim.people)
            for key in sim.reskeys:
                this_res = sim.results[key]
                output_sim.results[key].values += this_res.values

        # For non-count results (scale=False), rescale them
        for key in output_sim.reskeys:
            if not output_sim.results[key].scale:
                output_sim.results[key].values /= len(sims)

        return output_sim
Ejemplo n.º 10
0
def multi_run(sim,
              n_runs=4,
              reseed=True,
              noise=0.0,
              noisepar=None,
              iterpars=None,
              verbose=None,
              combine=False,
              keep_people=None,
              run_args=None,
              sim_args=None,
              par_args=None,
              **kwargs):
    '''
    For running multiple runs in parallel. If the first argument is a list of sims,
    exactly these will be run and most other arguments will be ignored.

    Args:
        sim (Sim or list): the sim instance to be run, or a list of sims.
        n_runs (int): the number of parallel runs
        reseed (bool): whether or not to generate a fresh seed for each run
        noise (float): the amount of noise to add to each run
        noisepar (string): the name of the parameter to add noise to
        iterpars (dict): any other parameters to iterate over the runs; see sc.parallelize() for syntax
        verbose (int): detail to print
        combine (bool): whether or not to combine all results into one sim, rather than return multiple sim objects
        keep_people (bool): whether or not to keep the people in each sim
        run_args (dict): arguments passed to sim.run()
        sim_args (dict): extra parameters to pass to the sim
        par_args (dict): arguments passed to sc.parallelize()
        kwargs (dict): also passed to the sim

    Returns:
        If combine is True, a single sim object with the combined results from each sim.
        Otherwise, a list of sim objects (default).

    **Example**::

        import covasim as cv
        sim = cv.Sim()
        sims = cv.multi_run(sim, n_runs=6, noise=0.2)
    '''

    # Handle inputs
    sim_args = sc.mergedicts(sim_args, kwargs)  # Handle blank
    par_args = sc.mergedicts(par_args)  # Handle blank

    # Handle iterpars
    if iterpars is None:
        iterpars = {}
    else:
        n_runs = None  # Reset and get from length of dict instead
        for key, val in iterpars.items():
            new_n = len(val)
            if n_runs is not None and new_n != n_runs:
                raise ValueError(
                    f'Each entry in iterpars must have the same length, not {n_runs} and {len(val)}'
                )
            else:
                n_runs = new_n

    # Run the sims
    if isinstance(sim, cvs.Sim):  # Normal case: one sim
        iterkwargs = {'ind': np.arange(n_runs)}
        iterkwargs.update(iterpars)
        kwargs = dict(sim=sim,
                      reseed=reseed,
                      noise=noise,
                      noisepar=noisepar,
                      verbose=verbose,
                      keep_people=keep_people,
                      sim_args=sim_args,
                      run_args=run_args)
        sims = sc.parallelize(single_run,
                              iterkwargs=iterkwargs,
                              kwargs=kwargs,
                              **par_args)
    elif isinstance(sim, list):  # List of sims
        iterkwargs = {'sim': sim}
        kwargs = dict(verbose=verbose,
                      keep_people=keep_people,
                      sim_args=sim_args,
                      run_args=run_args)
        sims = sc.parallelize(single_run,
                              iterkwargs=iterkwargs,
                              kwargs=kwargs,
                              **par_args)
    else:
        errormsg = f'Must be Sim object or list, not {type(sim)}'
        raise TypeError(errormsg)

    return sims
Ejemplo n.º 11
0
if __name__ == '__main__':

    T = sc.tic()

    try:
        sh.rmtree('./progress/', ignore_errors=True)
        os.makedirs('./progress/', exist_ok=True)
    except Exception as E:
        print(f'Could not make progress folder: {E}')

    if which == 'a':
        sweeps = construct1dsweeps()
        ntrials = len(sweeps)

    sc.heading(f'Beginning run for type "{which}" for {ntrials} trials...')
    sc.timedsleep(3)

    sims = sc.parallelize(run_scenario,
                          iterarg=np.arange(ntrials),
                          ncpus=ncpus,
                          kwargs={'which': which})

    msim = cv.MultiSim(sims)
    msim.save(msimfile)
    if doplot:
        msim.plot(max_sims=8,
                  to_plot='overview',
                  fig_args={'figsize': (38, 19)})

    print('Done.')
    sc.toc(T)
        staff_age_min=staff_age_min,
        staff_age_max=staff_age_max)
    sc.toc(T)

    print('Done')
    return


if __name__ == '__main__':

    seeds = [0, 1, 2, 3, 4]
    # parallelize = True
    parallelize = False

    if parallelize:
        ram = psutil.virtual_memory().available / 1e9
        required = 80 * len(seeds)  # 8 GB per 225e3 people
        if required < ram:
            print(
                f'You have {ram} GB of RAM, and this is estimated to require {required} GB: you should be fine'
            )
        else:
            print(
                f'You have {ram:0.2f} GB of RAM, but this is estimated to require {required} GB -- you are in trouble!!!!!!!!!'
            )
        sc.parallelize(cache_populations,
                       iterarg=seeds)  # Run them in parallel
    else:
        for seed in seeds:
            cache_populations(seed)
Ejemplo n.º 13
0
def multi_run(sim,
              n_runs=4,
              noise=0.0,
              noisepar=None,
              iterpars=None,
              verbose=None,
              sim_args=None,
              combine=False,
              **kwargs):
    '''
    For running multiple runs in parallel. Example:
        import covid_seattle
        sim = covid_seattle.Sim()
        sims = covid_seattle.multi_run(sim, n_runs=6, noise=0.2)
    '''

    # Create the sims
    if sim_args is None:
        sim_args = {}

    # Handle iterpars
    if iterpars is None:
        iterpars = {}
    else:
        n_runs = None  # Reset and get from length of dict instead
        for key, val in iterpars.items():
            new_n = len(val)
            if n_runs is not None and new_n != n_runs:
                raise ValueError(
                    f'Each entry in iterpars must have the same length, not {n_runs} and {len(val)}'
                )
            else:
                n_runs = new_n

    # Copy the simulations
    iterkwargs = {'ind': np.arange(n_runs)}
    iterkwargs.update(iterpars)
    kwargs = {
        'sim': sim,
        'noise': noise,
        'noisepar': noisepar,
        'verbose': verbose,
        'sim_args': sim_args
    }
    sims = sc.parallelize(single_run, iterkwargs=iterkwargs, kwargs=kwargs)

    # Usual case -- return a list of sims
    if not combine:
        return sims

    # Or, combine them into a single sim with scaled results
    else:
        output_sim = sc.dcp(sims[0])
        output_sim.pars[
            'parallelized'] = n_runs  # Store how this was parallelized
        output_sim.pars[
            'n'] *= n_runs  # Restore this since used in later calculations -- a bit hacky, it's true
        for s, sim in enumerate(sims[1:]):  # Skip the first one
            output_sim.people.update(sim.people)
            for key in sim.reskeys:
                this_res = sim.results[key]
                output_sim.results[key].values += this_res.values

        # For non-count results (scale=False), rescale them
        for key in output_sim.reskeys:
            if not output_sim.results[key].scale:
                output_sim.results[key].values /= len(sims)

        return output_sim
Ejemplo n.º 14
0
                            count += 1
                            meta = sc.objdict()
                            meta.count = count
                            meta.n_sims = n_sims
                            meta.inds = [i_sc, i_fst, i_fte, i_s]
                            meta.vals = sc.objdict(scenario=scenname,
                                                   future_symp_test=daily_test,
                                                   future_t_eff=future_t_eff,
                                                   seed=seed)
                            ikw.append(sc.dcp(meta.vals))
                            ikw[-1].meta = meta

            # Actually run the sims
            kwargs = dict(calibration=False, end_day='2020-10-23')
            sim_configs = sc.parallelize(make_sim,
                                         iterkwargs=ikw,
                                         kwargs=kwargs)
            if do_save:
                cv.save(filename=sims_file, obj=sim_configs)

        # Run sims
        all_sims = sc.parallelize(run_sim,
                                  iterarg=sim_configs,
                                  kwargs=dict(do_load=do_load,
                                              do_save=do_save))
        sims = np.empty((n_scenarios, sy_npts, tr_npts, max_seeds),
                        dtype=object)
        for sim in all_sims:  # Unflatten array
            i_sc, i_fst, i_fte, i_s = sim.meta.inds
            sims[i_sc, i_fst, i_fte, i_s] = sim
Ejemplo n.º 15
0
repeats = 10
noisevals = np.linspace(0, 1, 21)
x = np.linspace(xmin, xmax, npts)


def randgen(std):
    a = np.cos(x)
    b = np.random.randn(npts) * std
    return a + b


# Start timing
sc.tic()

# Create object in parallel
output = sc.parallelize(randgen, noisevals)

# Save to files
filenames = []
for n, noiseval in enumerate(noisevals):
    filename = 'noise%0.1f.obj' % noiseval
    sc.saveobj(filename, output[n])
    filenames.append(filename)

# Create odict from files
data = sc.odict()
for filename in filenames:
    data[filename] = sc.loadobj(filename)

# Create 3D plot
sc.surf3d(data[:])
Ejemplo n.º 16
0
def run_workers(CurrCtnyParams):
    # return sc.parallelize(worker, n_workers, kwargs={'CurrCtnyParams':CurrCtnyParams}, ncpus=4)
    return sc.parallelize(worker,
                          n_workers,
                          kwargs={'CurrCtnyParams': CurrCtnyParams},
                          ncpus=n_cpus)
Ejemplo n.º 17
0
def multi_run(sim,
              n_runs=4,
              reseed=True,
              noise=0.0,
              noisepar=None,
              iterpars=None,
              combine=False,
              keep_people=None,
              run_args=None,
              sim_args=None,
              par_args=None,
              do_run=True,
              parallel=True,
              verbose=None,
              **kwargs):
    '''
    For running multiple runs in parallel. If the first argument is a list of sims,
    exactly these will be run and most other arguments will be ignored.

    Args:
        sim        (Sim)   : the sim instance to be run, or a list of sims.
        n_runs     (int)   : the number of parallel runs
        reseed     (bool)  : whether or not to generate a fresh seed for each run
        noise      (float) : the amount of noise to add to each run
        noisepar   (str)   : the name of the parameter to add noise to
        iterpars   (dict)  : any other parameters to iterate over the runs; see sc.parallelize() for syntax
        combine    (bool)  : whether or not to combine all results into one sim, rather than return multiple sim objects
        keep_people(bool)  : whether to keep the people after the sim run
        run_args   (dict)  : arguments passed to sim.run()
        sim_args   (dict)  : extra parameters to pass to the sim
        par_args   (dict)  : arguments passed to sc.parallelize()
        do_run     (bool)  : whether to actually run the sim (if not, just initialize it)
        parallel   (bool)  : whether to run in parallel using multiprocessing (else, just run in a loop)
        verbose    (int)   : detail to print
        kwargs     (dict)  : also passed to the sim

    Returns:
        If combine is True, a single sim object with the combined results from each sim.
        Otherwise, a list of sim objects (default).

    **Example**::

        import covasim as cv
        sim = cv.Sim()
        sims = cv.multi_run(sim, n_runs=6, noise=0.2)
    '''

    # Handle inputs
    sim_args = sc.mergedicts(sim_args, kwargs)  # Handle blank
    par_args = sc.mergedicts(par_args)  # Handle blank

    # Handle iterpars
    if iterpars is None:
        iterpars = {}
    else:
        n_runs = None  # Reset and get from length of dict instead
        for key, val in iterpars.items():
            new_n = len(val)
            if n_runs is not None and new_n != n_runs:
                raise ValueError(
                    f'Each entry in iterpars must have the same length, not {n_runs} and {len(val)}'
                )
            else:
                n_runs = new_n

    # Run the sims
    if isinstance(sim, cvs.Sim):  # Normal case: one sim
        iterkwargs = {'ind': np.arange(n_runs)}
        iterkwargs.update(iterpars)
        kwargs = dict(sim=sim,
                      reseed=reseed,
                      noise=noise,
                      noisepar=noisepar,
                      verbose=verbose,
                      keep_people=keep_people,
                      sim_args=sim_args,
                      run_args=run_args,
                      do_run=do_run)
    elif isinstance(sim, list):  # List of sims
        iterkwargs = {'sim': sim}
        kwargs = dict(verbose=verbose,
                      keep_people=keep_people,
                      sim_args=sim_args,
                      run_args=run_args,
                      do_run=do_run)
    else:
        errormsg = f'Must be Sim object or list, not {type(sim)}'
        raise TypeError(errormsg)

    # Actually run!
    if parallel:
        sims = sc.parallelize(single_run,
                              iterkwargs=iterkwargs,
                              kwargs=kwargs,
                              **par_args)  # Run in parallel
    else:
        sims = []
        n_sims = len(list(iterkwargs.values(
        ))[0])  # Must have length >=1 and all entries must be the same length
        for s in range(n_sims):
            this_iter = {k: v[s]
                         for k, v in iterkwargs.items()
                         }  # Pull out items specific to this iteration
            this_iter.update(kwargs)  # Merge with the kwargs
            this_iter['sim'] = this_iter['sim'].copy(
            )  # Ensure we have a fresh sim; this happens implicitly on pickling with multiprocessing
            sim = single_run(**this_iter)  # Run in series
            sims.append(sim)

    return sims
Ejemplo n.º 18
0
if __name__ == '__main__':

    T = sc.tic()

    indices = [0]
    ncpus = 1
    do_plot = 1
    scenpars = None

    # Settings
    if ncpus > 1:
        sims = sc.parallelize(run_sim,
                              iterarg=indices,
                              ncpus=ncpus,
                              kwargs={
                                  'scenpars': scenpars,
                                  'do_shrink': 0
                              })
    else:
        sims = [run_sim(index, scenpars=scenpars) for index in indices]

    msim = cv.MultiSim(sims=sims)
    if do_plot:
        get_interv(msim.sims[0], 'contact_tracing'
                   ).do_plot = True  # Turn on plotting for this intervention
        msim.plot(to_plot='overview',
                  fig_args={'figsize': (38, 19)},
                  plot_sims=True)

    sc.toc(T)
Ejemplo n.º 19
0
'''
Pre-generate the synthpops population including school types. Takes ~102s per seed
'''

import psutil
import sciris as sc
import covasim_schools as cvsch

pop_size = 20e3
seeds = [0, 1, 2, 3, 4]
parallelize = True
# parallelize = False

if parallelize:
    ram = psutil.virtual_memory().available / 1e9
    required = 1 * len(seeds) * pop_size / 225e3  # 8 GB per 225e3 people
    if required < ram:
        print(
            f'You have {ram} GB of RAM, and this is estimated to require {required} GB: you should be fine'
        )
    else:
        print(
            f'You have {ram:0.2f} GB of RAM, but this is estimated to require {required} GB -- you are in trouble!!!!!!!!!'
        )
    sc.parallelize(cvsch.make_population,
                   kwargs={'pop_size': pop_size},
                   iterkwargs={'rand_seed': seeds})  # Run them in parallel
else:
    for seed in seeds:
        cvsch.make_population(pop_size=pop_size, rand_seed=seed)
Ejemplo n.º 20
0
def run_workers():
    return sc.parallelize(worker, n_workers)
    base_sim = cs.create_sim(params, pop_size=pop_size, folder=folder, verbose=0.1)


#%% Run the sims
def run_sim(scen):
    ''' Run a single sim '''
    sim = sc.dcp(base_sim)
    sm = cvsch.schools_manager(scen)
    sim['interventions'] += [sm]
    sim.run(keep_people=keep_people)
    return sim

if do_run:
    if parallelize:
        sc.heading('Running in parallel...')
        raw_sims = sc.parallelize(run_sim, all_scens.values())
        sims = sc.odict({k:scen for k,scen in zip(all_scens.keys(), raw_sims)})
    else:
        sc.heading('Running in serial...')
        sims = sc.odict()
        for k,scen in all_scens:
            sims[k] = run_sim(scen)
    if do_save:
        sc.saveobj(sims_file, sims)

else:
    sc.heading('Loading from disk...')
    sims = sc.loadobj(sims_file)


#%% Analysis
Ejemplo n.º 22
0
    country = country_data['name'][c]
    print(f'  Working on {country} ({c+1}/{len(country_data)})...')
    D[country].makepackage(verbose=False)
    meta = country_data.findrow(country, asdict=True)
    alloc = []
    dalys = []
    
    for spend in spendings:
        D[country].package().optimize(budget=spend*meta['population'])
        df = D[country].package().data
        alloc.append(sc.dcp(df['opt_spend'][:]))
        dalys.append(sc.dcp(df['opt_dalys_averted'][:]))
        meta['interv_names'] = sc.dcp(df['shortname'][:])
    result = sc.odict({'meta':meta, 'alloc':pl.array(alloc), 'dalys':pl.array(dalys), 'package':D[country].package()})
    return result

results = sc.parallelize(optimize, iterkwargs={'c':list(range(len(country_data)))}, kwargs={'D':D, 'country_data':country_data})
for r,result in enumerate(results):
    R[country_data['name'][r]] = result



# Saving
if dosave:
    sc.heading('Saving...')
    sc.saveobj('results/rapid_data.obj', D)
    sc.saveobj('results/rapid_results.obj', R)


sc.toc()
print('Done.')
Ejemplo n.º 23
0
def run_workers():
    ''' Run multiple workers in parallel '''
    output = sc.parallelize(worker, n_workers)
    return output
Ejemplo n.º 24
0
    },
)

if __name__ == '__main__':

    msims = sc.objdict()

    for which in ['actual', 'low', 'high']:

        scenpars = sc.objdict(sc.mergedicts(base, scens[which]))
        kwargs = dict(scenpars=scenpars, from_cache=from_cache, do_shrink=0)

        # Run the simulations
        if ncpus > 1:
            sims = sc.parallelize(cs.run_sim,
                                  iterarg=indices,
                                  ncpus=ncpus,
                                  kwargs=kwargs)
        else:
            sims = [cs.run_sim(index, **kwargs) for index in indices]

        # Merge into a multisim and optionally plot
        msim = cv.MultiSim(sims=sims)
        msim.reduce()
        msims[which] = msim
        if do_plot:
            msim.plot(to_plot='overview', fig_args={'figsize': (38, 19)})

    if do_save:
        print('Saving...')
        for msim in msims.values():
            for sim in msim.sims: