def _rouge(ref_file, summarization_file, subword_option=None): references = [] with codecs.getreader("utf-8")(tf.gfile.GFile(ref_file, "rb")) as f: for line in f: references.append(_clean(line, subword_option)) hypotheses = [] with codecs.getreader("utf-8")(tf.gfile.GFile(summarization_file, "rb")) as f: for line in f: hypotheses.append(_clean(line, subword_option=None)) rouge_score_map = rouge.rouge(hypotheses, references) return 100 * rouge_score_map["rouge_l/f_score"]
def _rouge(ref_file, summarization_file, bpe_delimiter=None): """Compute ROUGE scores and handling BPE.""" references = [] with codecs.getreader("utf-8")(tf.gfile.GFile(ref_file, "rb")) as fh: for line in fh: references.append(_clean(line, bpe_delimiter)) hypotheses = [] with codecs.getreader("utf-8")(tf.gfile.GFile(summarization_file, "rb")) as fh: for line in fh: hypotheses.append(_clean(line, bpe_delimiter)) rouge_score_map = rouge.rouge(hypotheses, references) return 100 * rouge_score_map["rouge_l/f_score"]