Ejemplo n.º 1
0
def v2rdm_hubbard_open_shell():
    import openfermion as of

    e_fci = []
    e_rdm = []
    for U in [1]:  # range(1, 11):
        sites = 5
        hubbard = of.hamiltonians.fermi_hubbard(1,
                                                sites,
                                                tunneling=1,
                                                coulomb=U,
                                                chemical_potential=0,
                                                magnetic_field=0,
                                                periodic=True,
                                                spinless=False)
        hamiltonian = of.get_interaction_operator(hubbard)
        op_mat = of.get_number_preserving_sparse_operator(
            hubbard, 2 * sites, sites, spin_preserving=True).toarray()
        sz_mat = of.get_number_preserving_sparse_operator(
            of.sz_operator(sites), 2 * sites, sites,
            spin_preserving=True).toarray()
        s2_mat = of.get_number_preserving_sparse_operator(
            of.s_squared_operator(sites),
            2 * sites,
            sites,
            spin_preserving=True).toarray()

        w, v = np.linalg.eigh(op_mat)
        sz_exp = []
        s2_exp = []
        for ii in range(len(w)):
            sz_exp.append((v[:, [ii]].conj().T @ sz_mat @ v[:, [ii]])[0,
                                                                      0].real)
            s2_exp.append((v[:, [ii]].conj().T @ s2_mat @ v[:, [ii]])[0,
                                                                      0].real)

        print(sz_exp[:10])
        print(s2_exp[:10])
        print(w[:10])

        gs_e = w[0]
        print(gs_e)

        one_body_ints, two_body_ints = hamiltonian.one_body_tensor, hamiltonian.two_body_tensor
        two_body_ints = np.einsum('ijkl->ijlk', two_body_ints)

        n_electrons = sites
        print('n_electrons', n_electrons)
        Na = 1 + (n_electrons // 2)
        Nb = n_electrons // 2
        spatial_basis_rank = sites
        bij_bas_aa, bij_bas_ab = geminal_spin_basis(spatial_basis_rank)

        opdm_a_interaction, opdm_b_interaction, v2aa, v2bb, v2ab = \
            spin_adapted_interaction_tensor_rdm_consistent(two_body_ints.real,
                                                           one_body_ints.real)

        v2ab_mat = np.zeros_like(v2ab.data)
        for i in range(spatial_basis_rank):
            # ia^ j^b j^b ia
            idx = bij_bas_ab.rev((i, i))
            v2ab_mat[idx, idx] = U

        v2ab = Tensor(v2ab_mat, basis=v2ab.basis, name=v2ab.name)

        dual_basis = sz_adapted_linear_constraints(
            spatial_basis_rank,
            Na,
            Nb, ['ck', 'cckk', 'kkcc', 'ckck'],
            S=0.5,
            M=0.5)

        print("constructed dual basis")

        copdm_a = opdm_a_interaction
        copdm_b = opdm_b_interaction
        coqdm_a = Tensor(np.zeros((spatial_basis_rank, spatial_basis_rank)),
                         name='kc_a')
        coqdm_b = Tensor(np.zeros((spatial_basis_rank, spatial_basis_rank)),
                         name='kc_b')
        ctpdm_aa = v2aa
        ctpdm_bb = v2bb
        ctpdm_ab = v2ab
        ctqdm_aa = Tensor(np.zeros_like(v2aa.data),
                          name='kkcc_aa',
                          basis=bij_bas_aa)
        ctqdm_bb = Tensor(np.zeros_like(v2bb.data),
                          name='kkcc_bb',
                          basis=bij_bas_aa)
        ctqdm_ab = Tensor(np.zeros_like(v2ab.data),
                          name='kkcc_ab',
                          basis=bij_bas_ab)
        cphdm_ab = Tensor(np.zeros((spatial_basis_rank * spatial_basis_rank,
                                    spatial_basis_rank * spatial_basis_rank)),
                          name='ckck_ab',
                          basis=bij_bas_ab)
        cphdm_ba = Tensor(np.zeros((spatial_basis_rank * spatial_basis_rank,
                                    spatial_basis_rank * spatial_basis_rank)),
                          name='ckck_ba',
                          basis=bij_bas_ab)
        cphdm_aabb = Tensor(np.zeros(
            (2 * spatial_basis_rank**2, 2 * spatial_basis_rank**2)),
                            name='ckck_aabb')

        ctensor = MultiTensor([
            copdm_a, copdm_b, coqdm_a, coqdm_b, ctpdm_aa, ctpdm_bb, ctpdm_ab,
            ctqdm_aa, ctqdm_bb, ctqdm_ab, cphdm_ab, cphdm_ba, cphdm_aabb
        ])

        ctensor.dual_basis = dual_basis
        A, _, b = ctensor.synthesize_dual_basis()
        print("size of dual basis", len(dual_basis.elements))

        nc, nv = A.shape
        nnz = A.nnz

        sdp = SDP()
        sdp.nc = nc
        sdp.nv = nv
        sdp.nnz = nnz
        sdp.blockstruct = list(
            map(lambda x: int(np.sqrt(x.size)), ctensor.tensors))
        sdp.nb = len(sdp.blockstruct)
        sdp.Amat = A.real
        sdp.bvec = b.todense().real
        sdp.cvec = ctensor.vectorize_tensors().real

        sdp.Initialize()
        epsilon = 0.5e-5
        sdp.epsilon = float(epsilon)
        sdp.epsilon_inner = float(epsilon)
        sdp.disp = True
        sdp.iter_max = 50000
        sdp.inner_iter_max = 1
        sdp.inner_solve = 'CG'
        sdp_data = solve_bpsdp(sdp)
        print(sdp.primal.T @ sdp.cvec, gs_e)
def sdp_nrep_sz_reconstruction(corrupted_tpdm_aa,
                               corrupted_tpdm_bb,
                               corrupted_tpdm_ab,
                               num_alpha,
                               num_beta,
                               disp=False,
                               inner_iter_type='EXACT',
                               epsilon=1.0E-8,
                               max_iter=5000):
    if np.ndim(corrupted_tpdm_aa) != 2:
        raise TypeError("corrupted_tpdm_aa must be a 2-tensor")
    if np.ndim(corrupted_tpdm_bb) != 2:
        raise TypeError("corrupted_tpdm_bb must be a 2-tensor")
    if np.ndim(corrupted_tpdm_ab) != 2:
        raise TypeError("corrupted_tpdm_ab must be a 2-tensor")

    if num_alpha != num_beta:
        raise ValueError(
            "right now we are not supporting differing spin numbers")

    spatial_basis_rank = int(np.sqrt(corrupted_tpdm_ab.shape[0]))
    # get basis bijection
    bij_bas_aa, bij_bas_ab = geminal_spin_basis(spatial_basis_rank)

    # build basis look up table
    bas_aa = {}
    bas_ab = {}
    cnt_aa = 0
    cnt_ab = 0
    # iterate over spatial orbital indices
    for p, q in product(range(spatial_basis_rank), repeat=2):
        if q > p:
            bas_aa[(p, q)] = cnt_aa
            cnt_aa += 1
        bas_ab[(p, q)] = cnt_ab
        cnt_ab += 1

    dual_basis = sz_adapted_linear_constraints(spatial_basis_rank, num_alpha,
                                               num_beta,
                                               ['ck', 'cckk', 'kkcc', 'ckck'])
    dual_basis += d2_e2_mapping(spatial_basis_rank, bas_aa, bas_ab,
                                corrupted_tpdm_aa, corrupted_tpdm_bb,
                                corrupted_tpdm_ab)

    c_cckk_me_aa = spin_orbital_marginal_norm_min(corrupted_tpdm_aa.shape[0],
                                                  tensor_name='cckk_me_aa')
    c_cckk_me_bb = spin_orbital_marginal_norm_min(corrupted_tpdm_bb.shape[0],
                                                  tensor_name='cckk_me_bb')
    c_cckk_me_ab = spin_orbital_marginal_norm_min(corrupted_tpdm_ab.shape[0],
                                                  tensor_name='cckk_me_ab')
    copdm_a = Tensor(np.zeros((spatial_basis_rank, spatial_basis_rank)),
                     name='ck_a')
    copdm_b = Tensor(np.zeros((spatial_basis_rank, spatial_basis_rank)),
                     name='ck_b')
    coqdm_a = Tensor(np.zeros((spatial_basis_rank, spatial_basis_rank)),
                     name='kc_a')
    coqdm_b = Tensor(np.zeros((spatial_basis_rank, spatial_basis_rank)),
                     name='kc_b')
    ctpdm_aa = Tensor(np.zeros_like(corrupted_tpdm_aa),
                      name='cckk_aa',
                      basis=bij_bas_aa)
    ctpdm_bb = Tensor(np.zeros_like(corrupted_tpdm_bb),
                      name='cckk_bb',
                      basis=bij_bas_aa)
    ctpdm_ab = Tensor(np.zeros_like(corrupted_tpdm_ab),
                      name='cckk_ab',
                      basis=bij_bas_ab)
    ctqdm_aa = Tensor(np.zeros_like(corrupted_tpdm_aa),
                      name='kkcc_aa',
                      basis=bij_bas_aa)
    ctqdm_bb = Tensor(np.zeros_like(corrupted_tpdm_bb),
                      name='kkcc_bb',
                      basis=bij_bas_aa)
    ctqdm_ab = Tensor(np.zeros_like(corrupted_tpdm_ab),
                      name='kkcc_ab',
                      basis=bij_bas_ab)

    cphdm_ab = Tensor(np.zeros((spatial_basis_rank, spatial_basis_rank,
                                spatial_basis_rank, spatial_basis_rank)),
                      name='ckck_ab')
    cphdm_ba = Tensor(np.zeros((spatial_basis_rank, spatial_basis_rank,
                                spatial_basis_rank, spatial_basis_rank)),
                      name='ckck_ba')
    cphdm_aabb = Tensor(np.zeros(
        (2 * spatial_basis_rank**2, 2 * spatial_basis_rank**2)),
                        name='ckck_aabb')

    ctensor = MultiTensor([
        copdm_a, copdm_b, coqdm_a, coqdm_b, ctpdm_aa, ctpdm_bb, ctpdm_ab,
        ctqdm_aa, ctqdm_bb, ctqdm_ab, cphdm_ab, cphdm_ba, cphdm_aabb,
        c_cckk_me_aa, c_cckk_me_bb, c_cckk_me_ab
    ])

    ctensor.dual_basis = dual_basis
    A, _, b = ctensor.synthesize_dual_basis()

    nc, nv = A.shape
    nnz = A.nnz

    sdp = SDP()

    sdp.nc = nc
    sdp.nv = nv
    sdp.nnz = nnz
    sdp.blockstruct = list(map(lambda x: int(np.sqrt(x.size)),
                               ctensor.tensors))
    sdp.nb = len(sdp.blockstruct)
    sdp.Amat = A.real
    sdp.bvec = b.todense().real

    sdp.cvec = ctensor.vectorize_tensors().real

    sdp.Initialize()

    sdp.epsilon = float(epsilon)
    sdp.epsilon_inner = float(epsilon)
    sdp.inner_solve = inner_iter_type
    sdp.disp = disp
    sdp.iter_max = max_iter

    solve_bpsdp(sdp)

    rdms_solution = vec2block(sdp.blockstruct, sdp.primal)
    return rdms_solution[4], rdms_solution[5], rdms_solution[6]
Ejemplo n.º 3
0
def dqg_run_bpsdp():
    import sys
    from openfermion.hamiltonians import MolecularData
    from openfermionpsi4 import run_psi4
    from openfermionpyscf import run_pyscf
    from openfermion.utils import map_one_pdm_to_one_hole_dm, \
        map_two_pdm_to_two_hole_dm, map_two_pdm_to_particle_hole_dm

    print('Running System Setup')
    basis = 'sto-6g'
    # basis = '6-31g'
    multiplicity = 1
    # charge = 0
    # geometry = [('H', [0.0, 0.0, 0.0]), ('H', [0, 0, 0.75])]
    # charge = 1
    # geometry = [('H', [0.0, 0.0, 0.0]), ('He', [0, 0, 0.75])]
    charge = 0
    bd = 1.2
    # geometry = [('H', [0.0, 0.0, 0.0]), ('H', [0, 0, bd]),
    #             ('H', [0.0, 0.0, 2 * bd]), ('H', [0, 0, 3 * bd])]
    # geometry = [['H', [0, 0, 0]], ['H', [1.2, 0, 0]],
    #             ['H', [0, 1.2, 0]], ['H', [1.2, 1.2, 0]]]
    # geometry = [['He', [0, 0, 0]], ['H', [0, 0, 1.2]]]
    #  geometry = [['Be' [0, 0, 0]], [['B', [1.2, 0, 0]]]]
    geometry = [['N', [0, 0, 0]], ['N', [0, 0, 1.1]]]
    molecule = MolecularData(geometry, basis, multiplicity, charge)
    # Run Psi4.
    # molecule = run_psi4(molecule,
    #                     run_scf=True,
    #                     run_mp2=False,
    #                     run_cisd=False,
    #                     run_ccsd=False,
    #                     run_fci=True,
    #                     delete_input=True)
    molecule = run_pyscf(molecule,
                         run_scf=True,
                         run_mp2=False,
                         run_cisd=False,
                         run_ccsd=False,
                         run_fci=True)

    print('nuclear_repulsion', molecule.nuclear_repulsion)
    print('gs energy ', molecule.fci_energy)
    print("hf energy ", molecule.hf_energy)

    nuclear_repulsion = molecule.nuclear_repulsion
    gs_energy = molecule.fci_energy

    import openfermion as of
    hamiltonian = molecule.get_molecular_hamiltonian(
        occupied_indices=[0], active_indices=[1, 2, 3, 4])
    print(type(hamiltonian))
    print(hamiltonian)
    nuclear_repulsion = hamiltonian.constant
    hamiltonian.constant = 0
    ham = of.get_sparse_operator(hamiltonian).toarray()
    w, v = np.linalg.eigh(ham)
    idx = 0
    gs_energy = w[idx]
    n_density = v[:, [idx]] @ v[:, [idx]].conj().T

    from representability.fermions.density.antisymm_sz_density import AntiSymmOrbitalDensity

    density = AntiSymmOrbitalDensity(n_density, 8)
    opdm_a, opdm_b = density.construct_opdm()
    tpdm_aa, tpdm_bb, tpdm_ab, _ = density.construct_tpdm()

    true_tpdm = density.get_tpdm(density.rho, density.dim)
    true_tpdm = true_tpdm.transpose(0, 1, 3, 2)
    test_tpdm = unspin_adapt(tpdm_aa, tpdm_bb, tpdm_ab)
    assert np.allclose(true_tpdm, test_tpdm)

    tqdm_aa, tqdm_bb, tqdm_ab, _ = density.construct_thdm()
    phdm_ab, phdm_ba, phdm_aabb = density.construct_phdm()
    Na = np.round(opdm_a.trace()).real
    Nb = np.round(opdm_b.trace()).real

    one_body_ints, two_body_ints = hamiltonian.one_body_tensor, hamiltonian.two_body_tensor
    two_body_ints = np.einsum('ijkl->ijlk', two_body_ints)

    n_electrons = Na + Nb
    print('n_electrons', n_electrons)
    dim = one_body_ints.shape[0]
    spatial_basis_rank = dim // 2
    bij_bas_aa, bij_bas_ab = geminal_spin_basis(spatial_basis_rank)

    opdm_a_interaction, opdm_b_interaction, v2aa, v2bb, v2ab = \
        spin_adapted_interaction_tensor_rdm_consistent(two_body_ints,
                                                       one_body_ints)

    dual_basis = sz_adapted_linear_constraints(
        spatial_basis_rank,
        Na,
        Nb, ['ck', 'kc', 'cckk', 'ckck', 'kkcc'],
        S=1,
        M=-1)
    print("constructed dual basis")

    opdm_a = Tensor(opdm_a, name='ck_a')
    opdm_b = Tensor(opdm_b, name='ck_b')
    oqdm_a = Tensor(np.eye(dim // 2) - opdm_a.data, name='kc_a')
    oqdm_b = Tensor(np.eye(dim // 2) - opdm_b.data, name='kc_b')

    tpdm_aa = Tensor(tpdm_aa, name='cckk_aa', basis=bij_bas_aa)
    tpdm_bb = Tensor(tpdm_bb, name='cckk_bb', basis=bij_bas_aa)
    tpdm_ab = Tensor(tpdm_ab, name='cckk_ab', basis=bij_bas_ab)

    tqdm_aa = Tensor(tqdm_aa, name='kkcc_aa', basis=bij_bas_aa)
    tqdm_bb = Tensor(tqdm_bb, name='kkcc_bb', basis=bij_bas_aa)
    tqdm_ab = Tensor(tqdm_ab, name='kkcc_ab', basis=bij_bas_ab)

    phdm_ab = Tensor(phdm_ab, name='ckck_ab', basis=bij_bas_ab)
    phdm_ba = Tensor(phdm_ba, name='ckck_ba', basis=bij_bas_ab)
    phdm_aabb = Tensor(phdm_aabb, name='ckck_aabb')

    dtensor = MultiTensor([
        opdm_a, opdm_b, oqdm_a, oqdm_b, tpdm_aa, tpdm_bb, tpdm_ab, tqdm_aa,
        tqdm_bb, tqdm_ab, phdm_ab, phdm_ba, phdm_aabb
    ])

    copdm_a = opdm_a_interaction
    copdm_b = opdm_b_interaction
    coqdm_a = Tensor(np.zeros((spatial_basis_rank, spatial_basis_rank)),
                     name='kc_a')
    coqdm_b = Tensor(np.zeros((spatial_basis_rank, spatial_basis_rank)),
                     name='kc_b')
    ctpdm_aa = v2aa
    ctpdm_bb = v2bb
    ctpdm_ab = v2ab
    ctqdm_aa = Tensor(np.zeros_like(v2aa.data),
                      name='kkcc_aa',
                      basis=bij_bas_aa)
    ctqdm_bb = Tensor(np.zeros_like(v2bb.data),
                      name='kkcc_bb',
                      basis=bij_bas_aa)
    ctqdm_ab = Tensor(np.zeros_like(v2ab.data),
                      name='kkcc_ab',
                      basis=bij_bas_ab)
    cphdm_ab = Tensor(np.zeros((spatial_basis_rank**2, spatial_basis_rank**2)),
                      name='ckck_ab',
                      basis=bij_bas_ab)
    cphdm_ba = Tensor(np.zeros((spatial_basis_rank**2, spatial_basis_rank**2)),
                      name='ckck_ba',
                      basis=bij_bas_ab)
    cphdm_aabb = Tensor(np.zeros(
        (2 * spatial_basis_rank**2, 2 * spatial_basis_rank**2)),
                        name='ckck_aabb')

    ctensor = MultiTensor([
        copdm_a, copdm_b, coqdm_a, coqdm_b, ctpdm_aa, ctpdm_bb, ctpdm_ab,
        ctqdm_aa, ctqdm_bb, ctqdm_ab, cphdm_ab, cphdm_ba, cphdm_aabb
    ])

    print(
        (ctensor.vectorize_tensors().T @ dtensor.vectorize_tensors())[0,
                                                                      0].real)
    print(gs_energy)

    ctensor.dual_basis = dual_basis
    A, _, b = ctensor.synthesize_dual_basis()
    print("size of dual basis", len(dual_basis.elements))

    print(A @ dtensor.vectorize_tensors() - b)

    nc, nv = A.shape
    A.eliminate_zeros()
    nnz = A.nnz

    from sdpsolve.sdp import SDP
    from sdpsolve.solvers.bpsdp import solve_bpsdp
    from sdpsolve.solvers.bpsdp.bpsdp_old import solve_bpsdp
    from sdpsolve.utils.matreshape import vec2block
    sdp = SDP()

    sdp.nc = nc
    sdp.nv = nv
    sdp.nnz = nnz
    sdp.blockstruct = list(map(lambda x: int(np.sqrt(x.size)),
                               ctensor.tensors))
    sdp.nb = len(sdp.blockstruct)
    sdp.Amat = A.real
    sdp.bvec = b.todense().real
    sdp.cvec = ctensor.vectorize_tensors().real

    sdp.Initialize()
    epsilon = 1.0E-7
    sdp.epsilon = float(epsilon)
    sdp.epsilon_inner = float(epsilon) / 100

    sdp.disp = True
    sdp.iter_max = 70000
    sdp.inner_solve = 'CG'
    sdp.inner_iter_max = 2

    # # sdp_data = solve_bpsdp(sdp)
    solve_bpsdp(sdp)
    # # create all the psd-matrices for the
    # variable_dictionary = {}
    # for tensor in ctensor.tensors:
    #     linear_dim = int(np.sqrt(tensor.size))
    #     variable_dictionary[tensor.name] = cvx.Variable(shape=(linear_dim, linear_dim), PSD=True, name=tensor.name)

    # print("constructing constraints")
    # constraints = []
    # for dbe in dual_basis:
    #     single_constraint = []
    #     for tname, v_elements, p_coeffs in dbe:
    #         active_indices = get_var_indices(ctensor.tensors[tname], v_elements)
    #         single_constraint.append(variable_dictionary[tname][active_indices] * p_coeffs)
    #     constraints.append(cvx.sum(single_constraint) == dbe.dual_scalar)
    # print('constraints constructed')

    # print("constructing the problem")
    # objective = cvx.Minimize(
    #             cvx.trace(copdm_a.data @ variable_dictionary['ck_a']) +
    #             cvx.trace(copdm_b.data @ variable_dictionary['ck_b']) +
    #             cvx.trace(ctpdm_aa.data @ variable_dictionary['cckk_aa']) +
    #             cvx.trace(ctpdm_bb.data @ variable_dictionary['cckk_bb']) +
    #             cvx.trace(ctpdm_ab.data @ variable_dictionary['cckk_ab']))

    # cvx_problem = cvx.Problem(objective, constraints=constraints)
    # print('problem constructed')

    # cvx_problem.solve(solver=cvx.SCS, verbose=True, eps=0.5E-5, max_iters=100000)

    # rdms_solution = vec2block(sdp.blockstruct, sdp.primal)

    print(gs_energy)
    # print(cvx_problem.value + nuclear_repulsion)
    # print(sdp_data.primal_value() + nuclear_repulsion)
    print(sdp.primal.T @ sdp.cvec)

    print(nuclear_repulsion)
    rdms = vec2block(sdp.blockstruct, sdp.primal)

    tpdm = unspin_adapt(rdms[4], rdms[5], rdms[6])
    print(np.einsum('ijij', tpdm))
    tpdm = np.einsum('ijkl->ijlk', tpdm)
def sdp_nrep_reconstruction(corrupted_tpdm, num_alpha, num_beta):
    """
    Reconstruct a 2-RDm that looks like the input corrupted tpdm

    This reconstruction scheme uses the spin-orbital reconstruction code which is not the optimal size SDP

    :param corrupted_tpdm: measured 2-RDM from the device
    :param num_alpha: number of alpha spin electrons
    :param num_beta: number of beta spin electrons
    :return: purified 2-RDM
    """
    if np.ndim(corrupted_tpdm) != 4:
        raise TypeError("corrupted_tpdm must be a 4-tensor")

    if num_alpha != num_beta:
        raise ValueError(
            "right now we are not supporting differing spin numbers")

    sp_dim = corrupted_tpdm.shape[0]  # single-particle rank
    opdm = np.zeros((sp_dim, sp_dim), dtype=int)
    oqdm = np.zeros((sp_dim, sp_dim), dtype=int)
    tpdm = np.zeros_like(corrupted_tpdm)
    tqdm = np.zeros_like(corrupted_tpdm)
    tgdm = np.zeros_like(corrupted_tpdm)
    opdm = Tensor(tensor=opdm, name='ck')
    oqdm = Tensor(tensor=oqdm, name='kc')
    tpdm = Tensor(tensor=tpdm, name='cckk')
    tqdm = Tensor(tensor=tqdm, name='kkcc')
    tgdm = Tensor(tensor=tgdm, name='ckck')
    error_matrix = spin_orbital_marginal_norm_min(sp_dim**2,
                                                  tensor_name='cckk_me')
    rdms = MultiTensor([opdm, oqdm, tpdm, tqdm, tgdm, error_matrix])

    db = spin_orbital_linear_constraints(sp_dim, num_alpha + num_beta,
                                         ['ck', 'cckk', 'kkcc', 'ckck'])
    db += d2_e2_mapping_spinorbital(sp_dim, corrupted_tpdm)

    rdms.dual_basis = db
    A, _, c = rdms.synthesize_dual_basis()
    nv = A.shape[1]
    nc = A.shape[0]
    nnz = A.nnz

    blocklist = [
        sp_dim, sp_dim, sp_dim**2, sp_dim**2, sp_dim**2, 2 * sp_dim**2
    ]
    nb = len(blocklist)

    sdp = SDP()

    sdp.nc = nc
    sdp.nv = nv
    sdp.nnz = nnz
    sdp.blockstruct = blocklist
    sdp.nb = nb
    sdp.Amat = A.real
    sdp.bvec = c.todense().real

    sdp.cvec = rdms.vectorize_tensors().real

    sdp.Initialize()

    sdp.epsilon = float(1.0E-8)
    sdp.inner_solve = "EXACT"
    sdp.disp = True
    solve_bpsdp(sdp)

    solution_rdms = vec2block(blocklist, sdp.primal)
    tpdm_reconstructed = np.zeros_like(corrupted_tpdm)
    for p, q, r, s in product(range(sp_dim), repeat=4):
        tpdm_reconstructed[p, q, r, s] = solution_rdms[2][p * sp_dim + q,
                                                          r * sp_dim + s]

    return tpdm_reconstructed