Ejemplo n.º 1
0
    def extract_runcamcol(self, w, columns):
        run = self.run[w[0]]
        camcol = self.camcol[w[0]]

        gal = sdsspy.read('calibobj.gal', run, camcol, lower=True,verbose=True)
        star = sdsspy.read('calibobj.star', run, camcol, lower=True, verbose=True)

        gid = sdsspy.photoid(gal)
        sid = sdsspy.photoid(star)

        data = []
        m,mg = eu.numpy_util.match(self.photoid[w], gid)
        if m.size > 0:
            gal = gal[mg]
            gdata = eu.numpy_util.extract_fields(gal, columns, strict=True)
            data.append(gdata)

        m,ms = eu.numpy_util.match(self.photoid[w], sid)
        if m.size > 0:
            star = star[ms]
            sdata = eu.numpy_util.extract_fields(star, columns, strict=True)
            data.append(sdata)

        data = eu.numpy_util.combine_arrlist(data)
        if data.size != w.size:
            mess = "Some objects did not match: %i/%i" % (data.size,w.size)
            if not self.allow_nomatch:
                raise mess
            else:
                print(mess)
        return data
Ejemplo n.º 2
0
    def extract_fields(self, objs):
        """
        Extract tags from the input structure and add some if needed.
        """

        dtype=self.keep_dtype()
        new = numpy.zeros(objs.size, dtype=dtype)
        esutil.numpy_util.copy_fields(objs, new)
    
        # calculate new fields
        new['photoid'] = sdsspy.photoid(new)

        flux,ivar=new['modelflux'],new['modelflux_ivar']
        ext=new['extinction']
        flux_dered,ivar_dered = sdsspy.dered_fluxes(ext, flux, ivar=ivar)


        mag_dered,err_dered = sdsspy.util.nmgy2mag(flux_dered, ivar=ivar_dered)
        new['modelmag_dered'] = mag_dered
        new['modelmag_dered_err'] = err_dered

        cmag_dered,cmagerr_dered = sdsspy.make_cmodelmag(objs, dered=True)
        new['cmodelmag_dered'] = cmag_dered
        new['cmodelmag_dered_err'] = cmagerr_dered

        return new
Ejemplo n.º 3
0
Archivo: sg.py Proyecto: esheldon/espy
    def gather_epochs(self, data, epochs_index_current):
        photoid = sdsspy.photoid(data)

        fh, frev=eu.stat.histogram(data['field'], binsize=1, rev=True)

        epochlist = []
        epochs_indices = numpy.zeros(data.size)
        epochs_count = numpy.zeros(data.size)

        epochs_index = epochs_index_current
        for i in xrange(fh.size):
            if frev[i] != frev[i+1]:
                wfield = frev[ frev[i]:frev[i+1] ]
                field = data['field'][wfield[0]]

                epochs = sdsspy.read('photoEpochs', 
                                     data['run'][0], 
                                     data['camcol'][0], 
                                     field=field,
                                     verbose=False, 
                                     lower=True)

                # first extract those that were actually used according
                # to the criteria for selecting the primaries above
                w=where1(epochs['cmodel_used'][:,2] == 1)
                if w.size == 0:
                    raise ValueError("found none that were used!")

                epochs = epochs[w]
                    
                # extract those that match by photoid
                for j in xrange(wfield.size):
                    pid = photoid[wfield[j]]
                    w=where1(epochs['primary_photoid'] == pid)
                    if w.size == 0:
                        raise ValueError("no matches for pid",pid)

                    epochs_indices[wfield[j]] = epochs_index
                    epochs_count[wfield[j]] = w.size
                    epochs_index += w.size

                    epochlist.append(epochs[w])

        if len(epochlist) == 0:
            raise ValueError("Expected to find some epochs!")

        epochs = eu.numpy_util.combine_arrlist(epochlist)

        if (epochs_index-epochs_index_current) != epochs.size:
            raise ValueError("epoch index not incremented right amount:"
                             "%i vs %i" % (epochs_index-epochs_index_current,epochs.size))

        return epochs, epochs_indices, epochs_count
Ejemplo n.º 4
0
    def create_output(self, st):
        bands = ['u','g','r','i','z']

        out_dict = {}
        for d in st.dtype.descr:
            name = str( d[0] )

            if len(d) == 3:
                if d[2] == 5:
                    # ignoring the higher dim stuff
                    for bandi in xrange(5):
                        fname = name+'_'+bands[bandi]
                        out_dict[fname] = st[name][:, bandi]
            else:
                out_dict[name] = st[name]

        if 'devflux' in st.dtype.names:
            #cmodelflux, cmodelflux_ivar = sdsspy.make_cmodelflux(st, doivar=True)
            cmodelmag_dered, cmodelmag_dered_err = sdsspy.make_cmodelmag(st, dered=True)

        modelflux, modelflux_ivar = sdsspy.dered_fluxes(st['extinction'], 
                                                        st['modelflux'], 
                                                        st['modelflux_ivar'])
        modelmag_dered, modelmag_dered_err = sdsspy.nmgy2mag(modelflux, modelflux_ivar)

        for f in sdsspy.FILTERCHARS:
            fnum = sdsspy.FILTERNUM[f]
            if 'devflux' in st.dtype.names:
                out_dict['cmodelflux_'+f] = cmodelmag_dered[:,fnum]
                out_dict['cmodelflux_ivar_'+f] = cmodelmag_dered_err[:,fnum]
                out_dict['cmodelmag_dered_'+f] = cmodelmag_dered[:,fnum]
                out_dict['cmodelmag_dered_err_'+f] = cmodelmag_dered_err[:,fnum]
            out_dict['modelmag_dered_'+f] = modelmag_dered[:,fnum]
            out_dict['modelmag_dered_err_'+f] = modelmag_dered_err[:,fnum]

        out_dict['photoid'] = sdsspy.photoid(st)

        self.set_maskflags(out_dict)

        # we will add an "survey_primary" column if we are not explicitly 
        # selecting survey_primary
        if self.type not in ['primgal','primstar']:
            survey_primary = numpy.zeros(st.size, dtype='i1')
            w=self.get_primary_indices(st)
            if w.size > 0:
                survey_primary[w] = 1
            out_dict['survey_primary'] = survey_primary

        return out_dict
Ejemplo n.º 5
0
Archivo: sg.py Proyecto: esheldon/espy
    def make_epochs_output(self, data):
        dtype = self.epochs_dtype()
        out = numpy.zeros(data.size, dtype=dtype)

        out['primary_photoid'] = data['primary_photoid']

        out['photoid'] = sdsspy.photoid(data)
        out['objc_type'] = data['objc_type']

        for ftype in ['psf','cmodel']:
            for filter in ['g','r','i']:
                fnum=sdsspy.FILTERNUM[filter]
                out[ftype+'flux_'+filter] = data[ftype+'flux'][:,fnum]
                out[ftype+'flux_ivar_'+filter] = data[ftype+'flux_ivar'][:,fnum]

                out[ftype+'_used_'+filter] = data[ftype+'_used'][:,fnum]

        return out
Ejemplo n.º 6
0
Archivo: sg.py Proyecto: esheldon/espy
    def collate_psf_fwhm(self):
        """
        Collate the results from matching epochs to sweeps to get psf_fwhm.
        """
        print("opening columns")
        cols = self.open_columns('epochs82')
        print("getting photoid")
        pid = cols['photoid'][:]

        sgdir = self.dir()
        extract_file = path_join(sgdir, 'epochs82-psf-fwhm.rec')
        print("reading psf_fwhm from:",extract_file)
        fwhm_data = eu.io.read(extract_file)



        print("matching")
        fwhm_pid = sdsspy.photoid(fwhm_data)
        m,ms = eu.numpy_util.match(pid, fwhm_pid)

        print("  matched %i/%i" % (m.size,pid.size))

        fwhm = numpy.zeros(pid.size, dtype='f4')

        print("writing psf_fwhm_g")
        fwhm[:] = -9999.
        fwhm[m] = fwhm_data['psf_fwhm'][ms,1]
        cols.write_column('psf_fwhm_g', fwhm, create=True)

        print("writing psf_fwhm_r")
        fwhm[:] = -9999.
        fwhm[m] = fwhm_data['psf_fwhm'][ms,2]
        cols.write_column('psf_fwhm_r', fwhm, create=True)

        print("writing psf_fwhm_i")
        fwhm[:] = -9999.
        fwhm[m] = fwhm_data['psf_fwhm'][ms,3]
        cols.write_column('psf_fwhm_i', fwhm, create=True)
Ejemplo n.º 7
0
Archivo: pg.py Proyecto: esheldon/espy
    def get_subset_and_derived(self,data):
        """
        Add columns such as photoid, htmid, mask flags and dereddened model
        mags
        """
        # create the output with the tags we want
        new = numpy.zeros(data.size, dtype=self.get_dtype())
        esutil.numpy_util.copy_fields(data, new)

        new['photoid'] = sdsspy.photoid(data)


        primflag = sdsspy.flags.flagval('resolve_status','survey_primary')
        w,=where((new['resolve_status'] & primflag) != 0)
        if w.size > 0:
            new['isprimary'][w] = 1


        flux,ivar = self.dered_fluxes(data['modelflux'], 
                                      data['modelflux_ivar'], 
                                      data['extinction'])

        mag,err = sdsspy.util.nmgy2mag(flux, ivar=ivar)

        new['modelmag_dered'] = mag
        new['modelmag_dered_err'] = err

        self.load_stomp_maps()
        self.load_htm()

        new['htmid10'] = SweepStuffer._htm.lookup_id(data['ra'], data['dec'])

        new['basic_maskflags'] = SweepStuffer._basic_map.Contains(data['ra'],data['dec'],'eq') 
        new['tycho_maskflags'] = SweepStuffer._tycho_map.Contains(data['ra'],data['dec'],'eq') 


        return new
Ejemplo n.º 8
0
Archivo: sg.py Proyecto: esheldon/espy
    def make_primary_output(self, data):
        dtype = self.prim_dtype()
        out = numpy.zeros(data.size, dtype=dtype)

        out['photoid'] = sdsspy.photoid(data)
        out['objc_type'] = data['objc_type']

        for ftype in ['psf','cmodel']:
            for filter in ['g','r','i']:
                fnum=sdsspy.FILTERNUM[filter]

                if ftype == 'cmodel':
                    # we couldn't get cmodel because stars don't have dev,exp
                    out['modelflux_'+filter] = data['modelflux'][:,fnum]
                    out['modelflux_ivar_'+filter] = data['modelflux_ivar'][:,fnum]
                else:
                    out[ftype+'flux_'+filter] = data[ftype+'flux'][:,fnum]
                    out[ftype+'flux_ivar_'+filter] = data[ftype+'flux_ivar'][:,fnum]

                out[ftype+'_nuse_'+filter] = data[ftype+'_nuse'][:,fnum]

                out[ftype+'flux_mean_'+filter] = data[ftype+'flux_mean'][:,fnum]
                out[ftype+'flux_mean_ivar_'+filter] = data[ftype+'flux_mean_ivar'][:,fnum]
        return out
Ejemplo n.º 9
0
Archivo: sg.py Proyecto: esheldon/espy
    def match_sweeps(self, data):
        gal=sdsspy.read('calibobj.gal',data['run'][0], data['camcol'][0],
                        lower=True)
        star=sdsspy.read('calibobj.star',data['run'][0], data['camcol'][0],
                         lower=True)
        photoid = sdsspy.photoid(data)
        gphotoid = sdsspy.photoid(gal)
        sphotoid = sdsspy.photoid(star)

        mdata_g, mg = eu.numpy_util.match(photoid, gphotoid)
        print("      gal matches:",mg.size)
        mdata_s, ms = eu.numpy_util.match(photoid, sphotoid)
        print("      star matches:",ms.size)

        nmatch = mdata_g.size + mdata_s.size
        if nmatch == 0:
            return numpy.array([])

        newdt = [('photoid','i8'),
                 ('objc_flags','i4'),
                 ('flags','i4',5),
                 ('flags2','i4',5),
                 ('calib_status','i4',5),
                 ('modelflux','f4',5),
                 ('modelflux_ivar','f4',5),
                 ('psfflux','f4',5),
                 ('psfflux_ivar','f4',5)]

        dtype = data.dtype.descr + newdt
        out = numpy.zeros(nmatch, dtype=dtype)

        #data_keep = numpy.zeros(nmatch, dtype=data.dtype)
        if mg.size > 0:
            gal = gal[mg]
            out['photoid'][0:mg.size] = gphotoid[mg]
            out['flags'][0:mg.size] = gal['flags']
            out['flags2'][0:mg.size] = gal['flags2']
            out['objc_flags'][0:mg.size] = gal['objc_flags']
            out['calib_status'][0:mg.size] = gal['calib_status']

            out['modelflux'][0:mg.size] = gal['modelflux']
            out['modelflux_ivar'][0:mg.size] = gal['modelflux_ivar']
            out['psfflux'][0:mg.size] = gal['psfflux']
            out['psfflux_ivar'][0:mg.size] = gal['psfflux_ivar']

            for n in data.dtype.names:
                out[n][0:mg.size] = data[n][mdata_g]

        if ms.size > 0:
            star=star[ms]
            out['photoid'][mg.size:] = sphotoid[ms]
            out['flags'][mg.size:] = star['flags']
            out['flags2'][mg.size:] = star['flags2']
            out['objc_flags'][mg.size:] = star['objc_flags']
            out['calib_status'][mg.size:] = star['calib_status']

            out['modelflux'][mg.size:] = star['modelflux']
            out['modelflux_ivar'][mg.size:] = star['modelflux_ivar']
            out['psfflux'][mg.size:] = star['psfflux']
            out['psfflux_ivar'][mg.size:] = star['psfflux_ivar']

            for n in data.dtype.names:
                out[n][mg.size:] = data[n][mdata_s]

        return out
Ejemplo n.º 10
0
Archivo: cas.py Proyecto: esheldon/espy
    def make_columns(self):
        """
        Make a columns database from all available data
        """

        from glob import glob
        import columns
        import sdsspy
        
        coldir = self.columns_dir()

        stdout.write("Will create columns: %s\n" % coldir)

        if os.path.exists(coldir):
            raise ValueError("coldir exists, please start from scratch")

        c=columns.Columns(coldir, verbose=False)


        dir=self.output_dir()
        pattern = self.scinv_file_pattern()
        pattern=path_join(dir, pattern)
        flist = glob(pattern)

        # z values in p(z)
        zvals = list( self.dr7pofz_zvals() )
        pofz_meta = {'zvals': zvals}
        i=1
        ntot=len(flist)
        for scinv_file in sorted(flist):
            stdout.write('-'*70+'\n')
            stdout.write('%s/%s\n' % (i,ntot))
            raw_file = scinv_file.replace('-scinv.rec','.dat')

            # read both scinv and raw, should line up
            stdout.write("Reading scinv data from: %s\n" % scinv_file)
            scinv, scinv_meta = esutil.sfile.read(scinv_file, header=True)
            scinv_meta = {'zlvals': scinv_meta['zlvals']}

            raw = self.read_raw(raw_file)

            if scinv.size != raw.size:
                raise ValueError("scinv and raw file are different sizes")

            photoid = sdsspy.photoid(raw)

            # write data from the raw file
            c.write_column('photoid',photoid, type='rec')
            c.write_column('casid',raw['casid'], type='rec')
            c.write_column('run',raw['run'], type='rec')
            c.write_column('rerun',raw['rerun'], type='rec')
            c.write_column('camcol',raw['camcol'], type='rec')
            c.write_column('field',raw['field'], type='rec')
            c.write_column('id',raw['id'], type='rec')
            c.write_column('ra',raw['ra'], type='rec')
            c.write_column('dec',raw['dec'], type='rec')
            c.write_column('pofz',raw['pz'], type='rec',
                           meta=pofz_meta)

            # now the scinv data
            c.write_column('mean_scinv',scinv['mean_scinv'], type='rec',
                           meta=scinv_meta)

            i+=1
Ejemplo n.º 11
0
    def create_output(self, st):
        import sdsspy

        bands = ['u','g','r','i','z']

        out_dict = {}
        for d in st.dtype.descr:
            name = str( d[0] )

            if len(d) == 3:
                if isinstance(d[2],tuple):
                    sz=d[2][0]
                else:
                    sz=d[2]
                if sz == 5:
                    for bandi in xrange(5):
                        fname = name+'_'+bands[bandi]
                        out_dict[fname] = st[name][:, bandi]
            else:
                out_dict[name] = st[name]

        # match up to sweeps and get some info
        print("    matching to primary sweeps")
        w=self.sweep_cols['thing_id'].match(st['thing_id'])
        #print("    found %s/%s" % (w.size,st.size))
        if w.size != st.size:
            raise ValueError("Did not match all")

        out_dict['primgal_id'] = w

        print("    Getting psf ellip")
        Irr_psf = st['Irr_psf']
        Irc_psf = st['Irc_psf']
        Icc_psf = st['Icc_psf']
        T_psf = st['Irr_psf'] + st['Icc_psf']

        if 'e1' not in st.dtype.names:
            e1,e2 = self.make_e1e2(st)

        print("    Copying ellip,mags")
        for f in sdsspy.FILTERCHARS:
            fnum = sdsspy.FILTERNUM[f]
            out_dict['e1_psf_'+f] = (Icc_psf[:,fnum]-Irr_psf[:,fnum])/T_psf[:,fnum]
            out_dict['e2_psf_'+f] = 2*Irc_psf[:,fnum]/T_psf[:,fnum]

            out_dict['modelmag_dered_'+f] = self.sweep_cols['modelmag_dered_'+f][w]
            ext = self.sweep_cols['extinction_'+f][w]
            out_dict['extinction_'+f] = ext

            cmodelname = 'cmodelmag_dered_'+f
            if cmodelname in self.sweep_cols:
                out_dict[cmodelname] = self.sweep_cols[cmodelname][w]

            if self.sweeptype == 'star':
                flux = self.sweep_cols['psfflux_'+f][w]
                ivar = self.sweep_cols['psfflux_ivar_'+f][w]
                flux_dered = sdsspy.dered_fluxes(ext, flux)
                mag_dered = sdsspy.nmgy2mag(flux_dered)

                out_dict['psfflux_'+f] = flux
                out_dict['psfflux_ivar_'+f] = ivar
                out_dict['psfmag_dered_'+f] = mag_dered

            if 'e1' not in st.dtype.names:
                out_dict['e1_'+f] = e1[:,fnum]
                out_dict['e2_'+f] = e2[:,fnum]


        out_dict['photoid'] = sdsspy.photoid(st)

        return out_dict