def test_conditional_sampling_dataframe(): data = pd.DataFrame({ 'column1': [1.0, 0.5, 2.5] * 10, 'column2': ['a', 'b', 'c'] * 10 }) model = TVAE(epochs=1) model.fit(data) conditions = pd.DataFrame({'column2': ['b', 'b', 'b', 'c', 'c']}) sampled = model.sample_remaining_columns(conditions) assert sampled.shape[0] == len(conditions['column2']) assert (sampled['column2'] == np.array(['b', 'b', 'b', 'c', 'c'])).all()
def test_conditional_sampling_dict(): data = pd.DataFrame({ 'column1': [1.0, 0.5, 2.5] * 10, 'column2': ['a', 'b', 'c'] * 10 }) model = TVAE(epochs=1) model.fit(data) conditions = [Condition({'column2': 'b'}, num_rows=30)] sampled = model.sample_conditions(conditions=conditions) assert sampled.shape == data.shape assert set(sampled['column2'].unique()) == set(['b'])
def test_conditional_sampling_two_conditions(): data = pd.DataFrame({ 'column1': [1.0, 0.5, 2.5] * 10, 'column2': ['a', 'b', 'c'] * 10, 'column3': ['d', 'e', 'f'] * 10 }) model = TVAE(epochs=1) model.fit(data) conditions = [Condition({'column2': 'b', 'column3': 'f'}, num_rows=5)] samples = model.sample_conditions(conditions=conditions) assert list(samples.column2) == ['b'] * 5 assert list(samples.column3) == ['f'] * 5
def test_conditional_sampling_dict(): data = pd.DataFrame({ "column1": [1.0, 0.5, 2.5] * 10, "column2": ["a", "b", "c"] * 10 }) model = TVAE(epochs=1) model.fit(data) conditions = {"column2": "b"} sampled = model.sample(30, conditions=conditions) assert sampled.shape == data.shape assert set(sampled["column2"].unique()) == set(["b"])
def test_conditional_sampling_two_conditions(): data = pd.DataFrame({ "column1": [1.0, 0.5, 2.5] * 10, "column2": ["a", "b", "c"] * 10, "column3": ["d", "e", "f"] * 10 }) model = TVAE(epochs=1) model.fit(data) conditions = {"column2": "b", "column3": "f"} samples = model.sample(5, conditions=conditions) assert list(samples.column2) == ['b'] * 5 assert list(samples.column3) == ['f'] * 5
def test_conditional_sampling_dataframe(): data = pd.DataFrame({ "column1": [1.0, 0.5, 2.5] * 10, "column2": ["a", "b", "c"] * 10 }) model = TVAE(epochs=1) model.fit(data) conditions = pd.DataFrame({"column2": ["b", "b", "b", "c", "c"]}) sampled = model.sample(conditions=conditions) assert sampled.shape[0] == len(conditions["column2"]) assert (sampled["column2"] == np.array(["b", "b", "b", "c", "c"])).all()
def test_conditional_sampling_numerical(): data = pd.DataFrame({ 'column1': [1.0, 0.5, 2.5] * 10, 'column2': ['a', 'b', 'c'] * 10, 'column3': ['d', 'e', 'f'] * 10 }) model = TVAE(epochs=1) model.fit(data) conditions = [Condition({ 'column1': 1.0, }, num_rows=5)] sampled = model.sample_conditions(conditions=conditions) assert list(sampled.column1) == [1.0] * 5
def test_conditional_sampling_numerical(): data = pd.DataFrame({ "column1": [1.0, 0.5, 2.5] * 10, "column2": ["a", "b", "c"] * 10, "column3": ["d", "e", "f"] * 10 }) model = TVAE(epochs=1) model.fit(data) conditions = { "column1": 1.0, } sampled = model.sample(5, conditions=conditions) assert list(sampled.column1) == [1.0] * 5
def test_tvae(): users = load_demo(metadata=False)['users'] tvae = TVAE(primary_key='user_id', epochs=1) tvae.fit(users) sampled = tvae.sample(len(users)) # test shape is right assert sampled.shape == users.shape # test user_id has been generated as an ID field assert list(sampled['user_id']) == list(range(0, len(users))) expected_metadata = { 'fields': { 'user_id': { 'type': 'id', 'subtype': 'integer', 'transformer': 'integer', }, 'country': { 'type': 'categorical', 'transformer': None, }, 'gender': { 'type': 'categorical', 'transformer': None, }, 'age': { 'type': 'numerical', 'subtype': 'integer', 'transformer': 'integer', } }, 'primary_key': 'user_id', 'constraints': [], 'sequence_index': None, 'context_columns': [], 'entity_columns': [], 'model_kwargs': {}, 'name': None } assert tvae.get_metadata().to_dict() == expected_metadata
def test__init__passes_correct_parameters(metadata_mock): """ Tests the ``BaseTabularModel.__init__`` method. The method should pass the parameters to the ``Table`` class. Input: - rounding set to an int - max_value set to an int - min_value set to an int Side Effects: - ``instance._metadata`` should receive the correct parameters """ # Run GaussianCopula(rounding=-1, max_value=100, min_value=-50) CTGAN(epochs=1, rounding=-1, max_value=100, min_value=-50) TVAE(epochs=1, rounding=-1, max_value=100, min_value=-50) CopulaGAN(epochs=1, rounding=-1, max_value=100, min_value=-50) # Asserts assert len(metadata_mock.mock_calls) == 5 expected_calls = [ call(field_names=None, primary_key=None, field_types=None, field_transformers=None, anonymize_fields=None, constraints=None, dtype_transformers={'O': 'one_hot_encoding'}, rounding=-1, max_value=100, min_value=-50), call(field_names=None, primary_key=None, field_types=None, field_transformers=None, anonymize_fields=None, constraints=None, dtype_transformers={'O': None}, rounding=-1, max_value=100, min_value=-50), call(field_names=None, primary_key=None, field_types=None, field_transformers=None, anonymize_fields=None, constraints=None, dtype_transformers={'O': None}, rounding=-1, max_value=100, min_value=-50), call(field_names=None, primary_key=None, field_types=None, field_transformers=None, anonymize_fields=None, constraints=None, dtype_transformers={'O': None}, rounding=-1, max_value=100, min_value=-50) ] metadata_mock.assert_has_calls(expected_calls, any_order=True)
from unittest.mock import Mock, call, patch import pandas as pd import pytest from sdv.metadata.table import Table from sdv.tabular.base import COND_IDX from sdv.tabular.copulagan import CopulaGAN from sdv.tabular.copulas import GaussianCopula from sdv.tabular.ctgan import CTGAN, TVAE from tests.utils import DataFrameMatcher MODELS = [ CTGAN(epochs=1), TVAE(epochs=1), GaussianCopula(), CopulaGAN(epochs=1), ] class TestBaseTabularModel: def test_sample_no_transformed_columns(self): """Test the ``BaseTabularModel.sample`` method with no transformed columns. When the transformed conditions DataFrame has no columns, expect that sample does not pass through any conditions when conditionally sampling. Setup: - Mock the ``_make_conditions_df`` method to return a dataframe representing the expected conditions, and the ``get_fields`` method to return metadata fields containing the expected conditioned column.
def test_recreate(): data = load_demo(metadata=False)['users'] # If distribution is non parametric, get_parameters fails model = TVAE(epochs=1) model.fit(data) sampled = model.sample(len(data)) assert sampled.shape == data.shape assert (sampled.dtypes == data.dtypes).all() assert (sampled.notnull().sum(axis=1) != 0).all() # Metadata model_meta = TVAE(epochs=1, table_metadata=model.get_metadata()) model_meta.fit(data) sampled = model_meta.sample(len(data)) assert sampled.shape == data.shape assert (sampled.dtypes == data.dtypes).all() assert (sampled.notnull().sum(axis=1) != 0).all() # Metadata dict model_meta_dict = TVAE(epochs=1, table_metadata=model.get_metadata().to_dict()) model_meta_dict.fit(data) sampled = model_meta_dict.sample(len(data)) assert sampled.shape == data.shape assert (sampled.dtypes == data.dtypes).all() assert (sampled.notnull().sum(axis=1) != 0).all()
from unittest.mock import patch import pandas as pd import pytest from copulas.multivariate.gaussian import GaussianMultivariate from sdv.constraints import Unique, UniqueCombinations from sdv.constraints.tabular import GreaterThan from sdv.tabular.copulagan import CopulaGAN from sdv.tabular.copulas import GaussianCopula from sdv.tabular.ctgan import CTGAN, TVAE MODELS = [ pytest.param(CTGAN(epochs=1), id='CTGAN'), pytest.param(TVAE(epochs=1), id='TVAE'), pytest.param(GaussianCopula(), id='GaussianCopula'), pytest.param(CopulaGAN(epochs=1), id='CopulaGAN'), ] @pytest.mark.parametrize('model', MODELS) def test_conditional_sampling_graceful_reject_sampling_True_dict(model): data = pd.DataFrame({ 'column1': list(range(100)), 'column2': list(range(100)), 'column3': list(range(100)) }) model.fit(data) conditions = {'column1': 28, 'column2': 37, 'column3': 93}