def plot_DC(setting, ds, ax): data = sort(se.search(setting, ds)) ts = np.array([int(d[0].split('e')[-1].split('.')[0]) for d in data]) / 1000 t_fit = np.linspace(ts[0], ts[-1], 100) guess = [0, 600] popt, pcov = scp.curve_fit(linear_fit, ts, se.noises(data), guess, bounds=((0, -np.inf), (np.inf, np.inf)), sigma=se.error(data), absolute_sigma=True) ax.plot(t_fit, linear_fit(t_fit, *popt), 'k--') ax.errorbar(ts, se.noises(data), color='r', fmt='o-', markersize=20) #, capsize = 4) ax.set_xlabel('Tid', fontsize=16) ax.set_ylabel('Noise', fontsize=16) ax.set_title('Dark Charge som funktion af tid', fontsize=16) ax.legend() print(int(setting[2].split('b')[-1])**2) return popt[0] / ((int(setting[2].split('b')[-1]))**2)
def find_effektiv_a(setting, ds): data = sort(se.search(setting, ds)) ts = np.array([int(d[0].split('e')[-1].split('.')[0]) for d in data]) / 1000 guess = [0, 600] popt, pcov = scp.curve_fit(linear_fit, ts, se.noises(data), guess, bounds=((0, -np.inf), (np.inf, np.inf)), sigma=se.error(data), absolute_sigma=True) b = 1 for sett in setting: if 'b' in sett: b = sett return popt[0], np.sqrt(np.diag(pcov))[0]