def values(S, T, P): """Compute a row in the table""" return ( P / 10, S, T, dens(S, T, P) - 1000, drhods(S, T, P), 10 ** 7 * alpha(S, T, P), heatcap(S, T, P), 1000 * temppot0(S, T, P), soundvel(S, T, P), )
def add_den_usv(ds): import seawater as sw import numpy as np import xarray as xr ds['wspd']=np.sqrt(ds.UWND_MEAN**2+ds.VWND_MEAN**2) tem=sw.dens0(ds.SAL_CTD_MEAN,ds.TEMP_CTD_MEAN) ds['density_mean']=xr.DataArray(tem,dims=('time'),coords={'time':ds.time}) tem=sw.alpha(ds.SAL_CTD_MEAN,ds.TEMP_CTD_MEAN,ds.BARO_PRES_MEAN*0) #pressure =0 at surface ds['alpha_ME']=xr.DataArray(tem,dims=('time'),coords={'time':ds.time}) tem=sw.beta(ds.SAL_CTD_MEAN,ds.TEMP_CTD_MEAN,ds.BARO_PRES_MEAN*0) #pressure =0 at surface ds['beta_MEAN']=xr.DataArray(tem,dims=('time'),coords={'time':ds.time}) xlat=ds.lat xlon=ds.lon dkm2 = abs(np.abs((((xlon[1:].data-xlon[0:-1].data)**2+(xlat[1:].data-xlat[0:-1].data)**2)**.5)*110.567*np.cos(np.pi*xlat[1:].data/180))) dkm2=np.append(dkm2,dkm2[len(dkm2)-1]) #add on last point dkm3 = dkm2.cumsum() ds['dist_total']=xr.DataArray(dkm3,dims=('time'),coords={'time':ds.time}) ds['dist_between']=xr.DataArray(dkm2,dims=('time'),coords={'time':ds.time}) return ds
def buoyancyFlux(SSS, SST, Q, EP, dz): """ Calculate the surface buoyancy flux Inputs: SSS - sea surface salinity (psu) SST - sea surface temperater (celsius) Q - net heat flux (W m-2) EP - evaporation minus precipitation (m s-1) dz - grid cell height [m] Returns: B_heat - heat buoyancy flux [W m-2] B_salt - salt buoyancy flux [W m-2] Ref: Gill, 1982 """ try: import seawater # CSIRO seawater toolbox except: raise Exception(' need to install CSIRO seawater toolbox') # Constants Cpinv = 1. / 4200.0 # Specific heat capacity [J kg-1 K-1] g = 9.81 RHO0 = 1000.0 # Convert EP from [m s-1] -> [kg m-2 s-1] EP = EP * RHO0 # Calculate thermal expansion and saline contraction coefficient alpha = seawater.alpha(SSS, SST, 0 * SST) beta = seawater.beta(SSS, SST, 0 * SST) # Buoyancy flux equation (see Gill eq 2.7.1, p36) # Note that units are [kg m s-3] or [W m-1] B_heat = Cpinv * g * alpha * Q B_salt = g * beta * EP * SSS # returns the fluxes in units [W m-2] return B_heat / dz, B_salt / dz
def buoyancyFlux(SSS,SST,Q,EP,dz): """ Calculate the surface buoyancy flux Inputs: SSS - sea surface salinity (psu) SST - sea surface temperater (celsius) Q - net heat flux (W m-2) EP - evaporation minus precipitation (m s-1) dz - grid cell height [m] Returns: B_heat - heat buoyancy flux [W m-2] B_salt - salt buoyancy flux [W m-2] Ref: Gill, 1982 """ try: import seawater # CSIRO seawater toolbox except: raise Exception, ' need to install CSIRO seawater toolbox' # Constants Cpinv = 1./4200.0 # Specific heat capacity [J kg-1 K-1] g = 9.81 RHO0 = 1000.0 # Convert EP from [m s-1] -> [kg m-2 s-1] EP = EP*RHO0 # Calculate thermal expansion and saline contraction coefficient alpha = seawater.alpha(SSS,SST,0*SST) beta = seawater.beta(SSS,SST,0*SST) # Buoyancy flux equation (see Gill eq 2.7.1, p36) # Note that units are [kg m s-3] or [W m-1] B_heat = Cpinv * g * alpha * Q B_salt = g*beta*EP*SSS # returns the fluxes in units [W m-2] return B_heat/dz, B_salt/dz
# computing averages and perturbations #################################### ubar, vbar, tbar = u.mean(axis=0), v.mean(axis=0), t.mean(axis=0) unot, vnot, tnot = u * 0, v * 0, t * 0 for l in range(lm): unot[l, ...] = u[l, ...] - ubar vnot[l, ...] = v[l, ...] - vbar tnot[l, ...] = t[l, ...] - tbar # baroclinic energy conversions ########################################## bec = [] g = 9.8 theta_z = tbar.mean() alpha = sw.alpha(35, theta_z, zlev) gradT = np.gradient(tbar) dTdx = gradT[1] / (0.05 * 111000) dTdy = gradT[0] / (0.05 * 111000) count = 0 for l in range(lm): count += 1 bc = ((g * alpha) / theta_z) * (unot[l] * tnot[l] * dTdx + vnot[l] * tnot[l] * dTdy) bec.append(bc.mean()) bec = np.array(bec) bec = smooth(bec, window_len=10, window='hanning')
hefti = heft * 1. # empta = empt * 1. emptp = empt * 1. empti = empt * 1. # # Compute density rhon[t, ...] = eosNeutral(tost.data, sost.data) - 1000. rhon[t, ...].mask = maski rhon[t, ...] = maskVal(rhon[t, ...], valmask) rhonl = rhon.data[t, ...] # Compute buoyancy/density flux as mass fluxes in kg/m2/s (SI units) # convwf : kg/m2/s = mm/s -> m/s convwf = 1.e-3 pres = tost.data * 0. denflxh[t, ...] = (-sw.alpha(sost.data, tost.data, pres) / sw.cp(sost.data, tost.data, pres)) * heft.data if empsw == 0: denflxw[t, ...] = (rhonl + 1000.) * sw.beta( sost.data, tost.data, pres) * sost.data * empt.data * convwf else: denflxw[t, ...] = (rhonl + 1000.) * sw.beta( sost.data, tost.data, pres) * empt.data * convwf denflx[t, ...] = denflxh[t, ...] + denflxw[t, ...] denflx[t, ...].mask = maski denflxh[t, ...].mask = maski denflxw[t, ...].mask = maski denflx[t, ...] = maskVal(denflx[t, ...], valmask) denflxh[t, ...] = maskVal(denflxh[t, ...], valmask) denflxw[t, ...] = maskVal(denflxw[t, ...], valmask) dflxh = denflxh.data[t, :, :]
def test(fileout='python-test.txt'): r"""Copy of the Matlab test. Modifications: Phil Morgan 03-12-12. Lindsay Pender, Converted to ITS-90. """ f = open(fileout, 'w') asterisks = '*' * 76 f.write(asterisks) f.write('\n TEST REPORT ') f.write('\n') f.write('\n SEA WATER LIBRARY %s' % sw.__version__) f.write('\n') # Show some info about this Python. f.write('\npython version: %s' % sys.version) f.write('\n on %s computer %s' % (uname()[0], uname()[-1])) f.write('\n') f.write('\n') f.write(asctime(localtime())) f.write('\n') f.write('\n') # Test main module ptmp. f.write('\n%s' % asterisks) f.write('\n** TESTING MODULE: ptmp') f.write('\n** and SUB-MODULE: adtg') f.write('\n%s' % asterisks) f.write('\n') f.write('\n') # Test 1 - data from Unesco 1983 p45. T = np.array([[0, 0, 0, 0, 0, 0], [10, 10, 10, 10, 10, 10], [20, 20, 20, 20, 20, 20], [30, 30, 30, 30, 30, 30], [40, 40, 40, 40, 40, 40]]) T = T / 1.00024 S = np.array([[25, 25, 25, 35, 35, 35], [25, 25, 25, 35, 35, 35], [25, 25, 25, 35, 35, 35], [25, 25, 25, 35, 35, 35], [25, 25, 25, 35, 35, 35]]) P = np.array([[0, 5000, 10000, 0, 5000, 10000], [0, 5000, 10000, 0, 5000, 10000], [0, 5000, 10000, 0, 5000, 10000], [0, 5000, 10000, 0, 5000, 10000], [0, 5000, 10000, 0, 5000, 10000]]) Pr = np.array([0, 0, 0, 0, 0, 0]) UN_ptmp = np.array([[0, -0.3061, -0.9667, 0, -0.3856, -1.0974], [10, 9.3531, 8.4684, 10, 9.2906, 8.3643], [20, 19.0438, 17.9426, 20, 18.9985, 17.8654], [30, 28.7512, 27.4353, 30, 28.7231, 27.3851], [40, 38.4607, 36.9254, 40, 38.4498, 36.9023]]) PT = sw.ptmp(S, T, P, Pr) * 1.00024 # Display results. f.write('\n') f.write('\n%s' % asterisks) f.write('\nComparison of accepted values from UNESCO 1983 ') f.write('\n (Unesco Tech. Paper in Marine Sci. No. 44, p45)') f.write('\n%s' % asterisks) f.write('\n') m, n = S.shape # TODO: so many loops there must be a better way. for icol in range(0, n): f.write('\n Sal Temp Press PTMP ptmp') f.write('\n (psu) (C) (db) (C) (C)\n') result = np.vstack( (S[:, icol], T[:, icol], P[:, icol], UN_ptmp[:, icol], PT[:, icol])) for iline in range(0, m): f.write(" %4.0f %4.0f %5.0f %8.4f %11.5f\n" % tuple(result[:, iline])) # Test main module svan. f.write('\n%s' % asterisks) f.write('\n** TESTING MODULE: svan') f.write('\n** and SUB-MODULE: dens dens0 smow seck pden ptmp') f.write('\n%s' % asterisks) # Test data FROM: Unesco Tech. Paper in Marine Sci. No. 44, p22. s = np.array([0, 0, 0, 0, 35, 35, 35, 35]) p = np.array([0, 10000, 0, 10000, 0, 10000, 0, 10000]) t = np.array([0, 0, 30, 30, 0, 0, 30, 30]) / 1.00024 UN_svan = np.array( [2749.54, 2288.61, 3170.58, 3147.85, 0.0, 0.00, 607.14, 916.34]) SVAN = sw.svan(s, t, p) # DISPLAY RESULTS f.write('\n') f.write('\n%s' % asterisks) f.write('\n') f.write('\nComparison of accepted values from UNESCO 1983') f.write('\n (Unesco Tech. Paper in Marine Sci. No. 44, p22)') f.write('\n%s' % asterisks) f.write('\n') f.write('\n Sal Temp Press SVAN svan') f.write('\n (psu) (C) (db) (1e-8*m3/kg) (1e-8*m3/kg)\n') result = np.vstack([s, t, p, UN_svan, 1e+8 * SVAN]) for iline in range(0, len(SVAN)): f.write(" %4.0f %4.0f %5.0f %11.2f %11.3f\n" % tuple(result[:, iline])) # Test main module salt. f.write('\n%s' % asterisks) f.write('\n** TESTING MODULE: salt') f.write('\n** and SUB-MODULE: salrt salrp sals') f.write('\n%s' % asterisks) f.write('\n') # Test 1 - data from Unesco 1983 p9. R = np.array([1, 1.2, 0.65]) # cndr = R. T = np.array([15, 20, 5]) / 1.00024 P = np.array([0, 2000, 1500]) #Rt = np.array([ 1, 1.0568875, 0.81705885]) UN_S = np.array([35, 37.245628, 27.995347]) S = sw.salt(R, T, P) # Display results. f.write('\n') f.write('\n%s' % asterisks) f.write('\nComparison of accepted values from UNESCO 1983 ') f.write('\n(Unesco Tech. Paper in Marine Sci. No. 44, p9)') f.write('\n%s' % asterisks) f.write('\n') f.write('\n Temp Press R S salt') f.write('\n (C) (db) (no units) (psu) (psu)\n') table = np.vstack([T, P, R, UN_S, S]) m, n = table.shape for iline in range(0, n): f.write(" %4.0f %4.0f %8.2f %11.6f %14.7f\n" % tuple(table[:, iline])) # Test main module cndr. f.write('\n%s' % asterisks) f.write('\n** TESTING MODULE: cndr') f.write('\n** and SUB-MODULE: salds') f.write('\n%s' % asterisks) # Test 1 - data from Unesco 1983 p9. T = np.array([0, 10, 0, 10, 10, 30]) / 1.00024 P = np.array([0, 0, 1000, 1000, 0, 0]) S = np.array([25, 25, 25, 25, 40, 40]) UN_R = np.array( [0.498088, 0.654990, 0.506244, 0.662975, 1.000073, 1.529967]) R = sw.cndr(S, T, P) # Display results. f.write('\n') f.write('\n%s' % asterisks) f.write('\nComparison of accepted values from UNESCO 1983 ') f.write('\n (Unesco Tech. Paper in Marine Sci. No. 44, p14)') f.write('\n%s' % asterisks) f.write('\n') f.write('\n') f.write('\n Temp Press S cndr cndr') f.write('\n (C) (db) (psu) (no units) (no units)\n') table = np.vstack([T, P, S, UN_R, R]) m, n = table.shape for iline in range(0, n): f.write(" %4.0f %4.0f %8.6f %11.6f %14.8f\n" % tuple(table[:, iline])) # Test main module depth. f.write('\n%s' % asterisks) f.write('\n** TESTING MODULE: depth') f.write('\n%s' % asterisks) # Test data - matrix "pressure", vector "lat" Unesco 1983 data p30. lat = np.array([0, 30, 45, 90]) P = np.array([[500, 500, 500, 500], [5000, 5000, 5000, 5000], [10000, 10000, 10000, 10000]]) UN_dpth = np.array([[496.65, 496.00, 495.34, 494.03], [4915.04, 4908.56, 4902.08, 4889.13], [9725.47, 9712.65, 9699.84, 9674.23]]) dpth = sw.dpth(P, lat) # Display results. f.write('\n') f.write('\n%s' % asterisks) f.write('\nComparison of accepted values from Unesco 1983 ') f.write('\n(Unesco Tech. Paper in Marine Sci. No. 44, p28)') f.write('\n%s' % asterisks) f.write('\n') f.write('\n') for irow in range(0, 3): f.write('\n Lat Press DPTH dpth') f.write('\n (degree) (db) (meter) (meter)\n') table = np.vstack([lat, P[irow, :], UN_dpth[irow, :], dpth[irow, :]]) m, n = table.shape for iline in range(0, n): f.write(" %6.3f %6.0f %8.2f %8.3f\n" % tuple(table[:, iline])) # Test main module fp. f.write('\n%s' % asterisks) f.write('\n** TESTING MODULE: fp') f.write('\n%s' % asterisks) # Test 1 - UNESCO data p.30. S = np.array([[5, 10, 15, 20, 25, 30, 35, 40], [5, 10, 15, 20, 25, 30, 35, 40]]) P = np.array([[0, 0, 0, 0, 0, 0, 0, 0], [500, 500, 500, 500, 500, 500, 500, 500]]) UN_fp = np.array( [[-0.274, -0.542, -0.812, -1.083, -1.358, -1.638, -1.922, -2.212], [-0.650, -0.919, -1.188, -1.460, -1.735, -2.014, -2.299, -2.589]]) FP = sw.fp(S, P) # Display results. f.write('\n') f.write('\n%s' % asterisks) f.write('\nComparison of accepted values from UNESCO 1983 ') f.write('\n (Unesco Tech. Paper in Marine Sci. No. 44, p30)') f.write('\n%s' % asterisks) f.write('\n') f.write('\n') for irow in range(0, 2): f.write('\n Sal Press fp fp') f.write('\n (psu) (db) (C) (C)\n') table = np.vstack( [S[irow, :], P[irow, :], UN_fp[irow, :], FP[irow, :]]) m, n = table.shape for iline in range(0, n): f.write(" %4.0f %5.0f %8.3f %11.4f\n" % tuple(table[:, iline])) # Test main module cp. f.write('\n%s' % asterisks) f.write('\n** TESTING MODULE: cp') f.write('\n%s' % asterisks) # Test 1. # Data from Pond and Pickard Intro. Dynamical Oceanography 2nd ed. 1986 T = np.array([[0, 0, 0, 0, 0, 0], [10, 10, 10, 10, 10, 10], [20, 20, 20, 20, 20, 20], [30, 30, 30, 30, 30, 30], [40, 40, 40, 40, 40, 40]]) / 1.00024 S = np.array([[25, 25, 25, 35, 35, 35], [25, 25, 25, 35, 35, 35], [25, 25, 25, 35, 35, 35], [25, 25, 25, 35, 35, 35], [25, 25, 25, 35, 35, 35]]) P = np.array([[0, 5000, 10000, 0, 5000, 10000], [0, 5000, 10000, 0, 5000, 10000], [0, 5000, 10000, 0, 5000, 10000], [0, 5000, 10000, 0, 5000, 10000], [0, 5000, 10000, 0, 5000, 10000]]) UN_cp = np.array([[4048.4, 3896.3, 3807.7, 3986.5, 3849.3, 3769.1], [4041.8, 3919.6, 3842.3, 3986.3, 3874.7, 3804.4], [4044.8, 3938.6, 3866.7, 3993.9, 3895.0, 3828.3], [4049.1, 3952.0, 3883.0, 4000.7, 3909.2, 3844.3], [4051.2, 3966.1, 3905.9, 4003.5, 3923.9, 3868.3]]) CP = sw.cp(S, T, P) # Display results. f.write('\n') f.write('\n%s' % asterisks) f.write('\nComparison of accepted values from UNESCO 1983 ') f.write('\n (Unesco Tech. Paper in Marine Sci. No. 44, p37)') f.write('\n%s' % asterisks) f.write('\n') m, n = S.shape f.write('\n') for icol in range(0, n): f.write('\n Sal Temp Press Cp cp') f.write('\n (psu) (C) (db) (J/kg.C) (J/kg.C)\n') result = np.vstack( [S[:, icol], T[:, icol], P[:, icol], UN_cp[:, icol], CP[:, icol]]) for iline in range(0, m): f.write(" %4.0f %4.0f %5.0f %8.1f %11.2f\n" % tuple(result[:, iline])) # Test main module svel. f.write('\n%s' % asterisks) f.write('\n** TESTING MODULE: svel') f.write('\n%s' % asterisks) # Test 1. # Data from Pond and Pickard Intro. Dynamical Oceanography 2nd ed. 1986 T = np.array([[0, 0, 0, 0, 0, 0], [10, 10, 10, 10, 10, 10], [20, 20, 20, 20, 20, 20], [30, 30, 30, 30, 30, 30], [40, 40, 40, 40, 40, 40]]) / 1.00024 S = np.array([[25, 25, 25, 35, 35, 35], [25, 25, 25, 35, 35, 35], [25, 25, 25, 35, 35, 35], [25, 25, 25, 35, 35, 35], [25, 25, 25, 35, 35, 35]]) P = np.array([[0, 5000, 10000, 0, 5000, 10000], [0, 5000, 10000, 0, 5000, 10000], [0, 5000, 10000, 0, 5000, 10000], [0, 5000, 10000, 0, 5000, 10000], [0, 5000, 10000, 0, 5000, 10000]]) UN_svel = np.array([[1435.8, 1520.4, 1610.4, 1449.1, 1534.0, 1623.2], [1477.7, 1561.3, 1647.4, 1489.8, 1573.4, 1659.0], [1510.3, 1593.6, 1676.8, 1521.5, 1604.5, 1687.2], [1535.2, 1619.0, 1700.6, 1545.6, 1629.0, 1710.1], [1553.4, 1638.0, 1719.2, 1563.2, 1647.3, 1727.8]]) SVEL = sw.svel(S, T, P) # Display results. f.write('\n') f.write('\n%s' % asterisks) f.write('\nComparison of accepted values from UNESCO 1983 ') f.write('\n (Unesco Tech. Paper in Marine Sci. No. 44, p50)') f.write('\n%s' % asterisks) f.write('\n') m, n = SVEL.shape f.write('\n') for icol in range(0, n): f.write('\n Sal Temp Press SVEL svel') f.write('\n (psu) (C) (db) (m/s) (m/s)\n') result = np.vstack([ S[:, icol], T[:, icol], P[:, icol], UN_svel[:, icol], SVEL[:, icol] ]) for iline in range(0, m): f.write(" %4.0f %4.0f %5.0f %8.1f %11.3f\n" % tuple(result[:, iline])) # Test submodules alpha beta aonb. f.write('\n%s' % asterisks) f.write('\n** and SUB-MODULE: alpha beta aonb') f.write('\n%s' % asterisks) # Data from McDouogall 1987. s = 40 PT = 10 p = 4000 beta_lit = 0.72088e-03 aonb_lit = 0.34763 alpha_lit = aonb_lit * beta_lit BETA = sw.beta(s, PT, p, pt=True) ALPHA = sw.alpha(s, PT, p, pt=True) AONB = sw.aonb(s, PT, p, pt=True) # Display results. f.write('\n') f.write('\n%s' % asterisks) f.write('\nComparison of accepted values from MCDOUGALL 1987 ') f.write('\n%s' % asterisks) f.write('\n') f.write('\n') f.write('\n Sal Temp Press BETA beta') f.write('\n (psu) (C) (db) (psu^-1) (psu^-1)\n') table = np.hstack([s, PT, p, beta_lit, BETA]) f.write(" %4.0f %4.0f %5.0f %11.4e %11.5e\n" % tuple(table)) f.write('\n Sal Temp Press AONB aonb') f.write('\n (psu) (C) (db) (psu C^-1) (psu C^-1)\n') table = np.hstack([s, PT, p, aonb_lit, AONB]) f.write(" %4.0f %4.0f %5.0f %8.5f %11.6f\n" % tuple(table)) f.write('\n Sal Temp Press ALPHA alpha') f.write('\n (psu) (C) (db) (psu^-1) (psu^-1)\n') table = np.hstack([s, PT, p, alpha_lit, ALPHA]) f.write(" %4.0f %4.0f %5.0f %11.4e %11.4e\n" % tuple(table)) # Test main moduleS satO2 satN2 satAr. f.write('\n%s' % asterisks) f.write('\n** TESTING MODULE: satO2 satN2 satAr') f.write('\n%s' % asterisks) f.write('\n') # Data from Weiss 1970. T = np.array([[-1, -1], [10, 10], [20, 20], [40, 40]]) / 1.00024 S = np.array([[20, 40], [20, 40], [20, 40], [20, 40]]) lit_O2 = np.array([[9.162, 7.984], [6.950, 6.121], [5.644, 5.015], [4.050, 3.656]]) lit_N2 = np.array([[16.28, 14.01], [12.64, 11.01], [10.47, 9.21], [7.78, 6.95]]) lit_Ar = np.array([[0.4456, 0.3877], [0.3397, 0.2989], [0.2766, 0.2457], [0.1986, 0.1794]]) O2 = sw.satO2(S, T) N2 = sw.satN2(S, T) Ar = sw.satAr(S, T) # Display results. f.write('\n') f.write('\n%s' % asterisks) f.write('\nComparison of accepted values from Weiss, R.F. 1979 ') f.write('\n"The solubility of nitrogen, oxygen and argon in water') f.write('\n and seawater." Deep-Sea Research., 1970, Vol 17, pp721-735.') f.write('\n%s' % asterisks) f.write('\n') m, n = S.shape f.write('\n') for icol in range(0, n): f.write('\n Sal Temp O2 satO2') f.write('\n (psu) (C) (ml/l) (ml/l)\n') result = np.vstack( [S[:, icol], T[:, icol], lit_O2[:, icol], O2[:, icol]]) for iline in range(0, m): f.write(" %4.0f %4.0f %8.2f %9.3f\n" % tuple(result[:, iline])) for icol in range(0, n): f.write('\n Sal Temp N2 satN2') f.write('\n (psu) (C) (ml/l) (ml/l)\n') result = np.vstack( [S[:, icol], T[:, icol], lit_N2[:, icol], N2[:, icol]]) for iline in range(0, m): f.write(" %4.0f %4.0f %8.2f %9.3f\n" % tuple(result[:, iline])) for icol in range(0, n): f.write('\n Sal Temp Ar satAr') f.write('\n (psu) (C) (ml/l) (ml/l)\n') result = np.vstack( [S[:, icol], T[:, icol], lit_Ar[:, icol], Ar[:, icol]]) for iline in range(0, m): f.write(" %4.0f %4.0f %8.4f %9.4f\n" % tuple(result[:, iline]))
def model_timestep(T, S, U, V, z, I, L, E, P, tau_x, tau_y, dt, nabla_b=None, Ekman_Q_flux=None, use_static_stability=True, use_mixed_layer_stability=True, use_shear_stability=True, use_Ekman_flux=False, use_MLI=False, tracer=None, vert_diffusivity=None, verbose=False, I1=0.62, I2=None, lambda1=.6, lambda2=20, T0=0, S0=34, rho0=None, alpha=None, beta=None, f=sw.f(40), return_MLD=False, advection=False, l_poly=1e4, phi=5e-2, T_cdw=1, S_cdw=34.5, shelf_thick=350, debug=False, T_out=-1, S_out=33.8, return_dTdS=False, return_TSrelax=False, return_vel=False): # define initial variables c = 4218 # heat capacity (J kg^-1 K^-1) if I2 is None: I2 = 1 - I1 if I1 + I2 != 1: raise Exception('Shortwave insolation amplitudes need to sum to unity') if rho0 is None: rho0 = sw.dens(S0, T0, 0) if alpha is None: alpha = -sw.alpha( S0, T0, 0 ) * rho0 # multiply by rho to fit into nice equation of state (see get_rho function) if beta is None: beta = sw.beta( S0, T0, 0 ) * rho0 # # multiply by rho to fit into nice equation of state (see get_rho function) dz = z[1] - z[0] if use_Ekman_flux and Ekman_Q_flux is None: raise Exception( 'Using Ekman-induced buoyacy flux but no buoyancy gradients were given.' ) if use_MLI and MLI_flux is None: raise Exception('Using MLI but no horizontal buoyancy gradient given.') T = T.copy() S = S.copy() U = U.copy() V = V.copy() # so don't overwrite data if tracer is not None: tracer = tracer.copy() # make initial heat profile I_profile = -I / dz * ( I1 * np.exp(-z / lambda1) * (np.exp(-dz / 2 / lambda1) - np.exp(dz / 2 / lambda1)) + I2 * np.exp(-z / lambda2) * (np.exp(-dz / 2 / lambda2) - np.exp(dz / 2 / lambda2))) L_profile = np.zeros(len(z)) L_profile[0] = L / dz Q_profile = I_profile + L_profile if use_Ekman_flux: A = 0.1 # eddy viscosity m^2 s^-1 z_Ek = np.sqrt(A / np.abs(f)) if verbose: print('Using Ekman depth of %d m' % z_Ek) z_Ek_ind = np.where(z > z_Ek)[0][0] Q_Ek_profile = np.zeros(len(z)) Q_Ek_profile[0:z_Ek_ind] = Ekman_Q_flux / z_Ek * dz Q_profile += Q_Ek_profile if advection == True: Tf = sw.fp(S, z) #freezing temperature for the column using salinity and pressure Tf_mean = np.mean(T[51::] - Tf[51::]) #find temperature of no motion v_profile = ((T - Tf) - Tf_mean) * phi #create the velocity profile v_profile[0:50] = 0 #there is no mean advection in the top 25 m h_interface = (np.abs(v_profile[51::] - 0)).argmin() + 50 #find the depth of the point of no motion inv_time_length = np.zeros(shape=len(z)) inv_time_length = np.absolute(v_profile) / l_poly #create 1/tau #Create the relaxation profiles for S and T T_relax = np.zeros(shape=len(z)) T_relax = np.tanh((z - z[h_interface]) / 100) * (T_cdw - T_out) / 2 + (T_cdw + T_out) / 2 T_relax[h_interface:len(z)] = T_relax[h_interface:len(z)] + 0.6 * ( (z[h_interface:len(z)] - z[h_interface]) / 1000) S_relax = np.zeros(shape=len(z)) S_relax = np.tanh((z - z[h_interface]) / 100) * (S_cdw - S_out) / 2 + (S_cdw + S_out) / 2 S_relax[h_interface:len(z)] = S_relax[h_interface:len(z)] + 0.25 * ( (z[h_interface:len(z)] - z[h_interface]) / 1000) # update temperature if advection == False: dTdt = Q_profile / (c * rho0) else: dTdt = Q_profile / (c * rho0) + inv_time_length * (T_relax - T) if debug == True: print('inv_time_length*(T_relax-T): ', inv_time_length[0:100] * (T_relax[0:100] - T[0:100])) if use_MLI: mld_ind = get_mld_ind(T, S, U, V, z) mld = z[mld_ind] C_e = 0.06 g = 9.81 # gravitational acceleration (m s^-2) c = 4218 # heat capacity (J kg^-1 degC^-1 MLI_dTdt = -C_e * nabla_b**2 * mld**2 * rho0 / (np.abs(f) * alpha * g) vert_profile = 4 / mld * (1 - 2 * z / mld) * ( 16 + 10 * (1 - 2 * z / mld)**2) / 21 # this is vertical derivative of mu(z) vert_profile[mld_ind::] = 0 vert_profile[0:mld_ind] -= np.mean( vert_profile[0:mld_ind] ) # just to ensure that no heat added to system dTdt += MLI_dTdt * vert_profile T += dTdt * dt # update salinity dSdt_0 = S[0] * (E - P) / dz / 1000 S[0] += dSdt_0 * dt if advection == True: dSdt = inv_time_length * (S_relax - S) S += dSdt * dt if use_MLI: rho = get_rho(T, S, T0, S0, rho0, alpha, beta) half_mld_ind = int(mld_ind / 2) if np.any(np.diff(rho[half_mld_ind::]) < 0): if verbose: print( 'Need to homogenize discontinuity at base of previous mixed layer' ) # get rid of discontinuity at base of previous mixed layer # homogenize the region of water from mld/2 to z* # z* is the shallowest value (> mld/2) such that the homogenized rho <= rho(z*) zstar_ind = mld_ind.copy() while np.mean(rho[half_mld_ind:zstar_ind]) >= rho[zstar_ind]: if verbose: print('Deepening z*...') zstar_ind += 1 T[half_mld_ind:zstar_ind] = np.mean(T[half_mld_ind:zstar_ind]) S[half_mld_ind:zstar_ind] = np.mean(S[half_mld_ind:zstar_ind]) if tracer is not None: tracer[:, half_mld_ind:zstar_ind] = np.atleast_2d( np.mean(tracer[:, half_mld_ind:zstar_ind], axis=1)).T elif verbose: print('No need to homogenize base of previous mixed layer') # update momentum # first rotate momentum halfway angle = -f * dt / 2 # currently assuming this is in rad U, V = rotate(angle, U, V) # then add wind stress mld_ind = get_mld_ind(T, S, U, V, z) mld = z[mld_ind] U[0:mld_ind] += tau_x / mld / rho0 * dz * dt V[0:mld_ind] += tau_y / mld / rho0 * dz * dt # then rotate second half U, V = rotate(angle, U, V) if use_static_stability: T, S, U, V = static_stability(T, S, U, V, z, T0, S0, rho0, alpha, beta) if get_mld_ind(T, S, U, V, z) == (T.size - 1): use_mixed_layer_stability = False use_shear_stability = False if use_mixed_layer_stability: T, S, U, V = mixed_layer_stability(T, S, U, V, z, T0, S0, rho0, alpha, beta, verbose=verbose) if use_shear_stability: T, S, U, V = shear_stability(T, S, U, V, z, T0, S0, rho0, alpha, beta, verbose=verbose) if vert_diffusivity is not None: dTdt_vd = np.zeros(len(T)) dTdt_vd[1:-1] = np.diff(np.diff(T)) / dz**2 T += vert_diffusivity * dTdt_vd * dt dSdt_vd = np.zeros(len(S)) dSdt_vd[1:-1] = np.diff(np.diff(S)) / dz**2 S += vert_diffusivity * dSdt_vd * dt dUdt = np.zeros(len(U)) dUdt[1:-1] = np.diff(np.diff(U)) / dz**2 U += vert_diffusivity * dUdt * dt dVdt = np.zeros(len(V)) dVdt[1:-1] = np.diff(np.diff(V)) / dz**2 V += vert_diffusivity * dVdt * dt if tracer is not None: dtdt = np.zeros(shape=tracer.shape) dtdt[:, 1:-1] = np.diff(np.diff(tracer, axis=1), axis=1) / dz**2 tracer += vert_diffusivity * dtdt * dt return_variables = (T, S, U, V) if tracer is not None: return_variables += (tracer, ) if return_MLD: return_variables += (get_mld(T, S, U, V, z), ) if return_dTdS: return_variables += ( dTdt, dSdt, ) if return_TSrelax: return_variables += ( T_relax, S_relax, ) if return_vel: return_variables += (v_profile, ) return return_variables
def model_timestep(T, S, U, V, z, I, L, E, P, tau_x, tau_y, dt, nabla_b=None, Ekman_Q_flux=None, use_static_stability=True, use_mixed_layer_stability=True, use_shear_stability=True, use_Ekman_flux=False, use_MLI=False, tracer=None, vert_diffusivity=None, verbose=False, I1=0.62, I2=None, lambda1=.6, lambda2=20, T0=17, S0=36, rho0=None, alpha=None, beta=None, f=sw.f(40), return_MLD=False): # define initial variables c = 4218 # heat capacity (J kg^-1 K^-1) if I2 is None: I2 = 1 - I1 if I1 + I2 != 1: raise Exception('Shortwave insolation amplitudes need to sum to unity') if rho0 is None: rho0 = sw.dens(S0, T0, 0) if alpha is None: alpha = -sw.alpha( S0, T0, 0 ) * rho0 # multiply by rho to fit into nice equation of state (see get_rho function) if beta is None: beta = sw.beta( S0, T0, 0 ) * rho0 # # multiply by rho to fit into nice equation of state (see get_rho function) dz = z[1] - z[0] if use_Ekman_flux and Ekman_Q_flux is None: raise Exception( 'Using Ekman-induced buoyacy flux but no buoyancy gradients were given.' ) if use_MLI and nabla_b is None: raise Exception('Using MLI but no horizontal buoyancy gradient given.') T = T.copy() S = S.copy() U = U.copy() V = V.copy() # so don't overwrite data if tracer is not None: tracer = tracer.copy() # make initial heat profile I_profile = -I / dz * ( I1 * np.exp(-z / lambda1) * (np.exp(-dz / 2 / lambda1) - np.exp(dz / 2 / lambda1)) + I2 * np.exp(-z / lambda2) * (np.exp(-dz / 2 / lambda2) - np.exp(dz / 2 / lambda2))) L_profile = np.zeros(len(z)) L_profile[0] = L / dz Q_profile = I_profile + L_profile if use_Ekman_flux: A = 0.1 # eddy viscosity m^2 s^-1 z_Ek = np.sqrt(A / np.abs(f)) if verbose: print('Using Ekman depth of %d m' % z_Ek) z_Ek_ind = np.where(z > z_Ek)[0][0] Q_Ek_profile = np.zeros(len(z)) Q_Ek_profile[0:z_Ek_ind] = Ekman_Q_flux / z_Ek * dz Q_profile += Q_Ek_profile # update temperature dTdt = Q_profile / (c * rho0) if use_MLI: mld_ind = get_mld_ind(T, S, U, V, z) mld = z[mld_ind] C_e = 0.06 g = 9.81 # gravitational acceleration (m s^-2) c = 4218 # heat capacity (J kg^-1 degC^-1 MLI_dTdt = -C_e * nabla_b**2 * mld**2 * rho0 / (np.abs(f) * alpha * g) vert_profile = 4 / mld * (1 - 2 * z / mld) * ( 16 + 10 * (1 - 2 * z / mld)**2) / 21 # this is vertical derivative of mu(z) vert_profile[mld_ind::] = 0 vert_profile[0:mld_ind] -= np.mean( vert_profile[0:mld_ind] ) # just to ensure that no heat added to system dTdt += MLI_dTdt * vert_profile T += dTdt * dt # update salinity dSdt = S[0] * (E - P) / dz / 1000 S[0] += dSdt * dt if use_MLI: rho = get_rho(T, S, T0, S0, rho0, alpha, beta) half_mld_ind = int(mld_ind / 2) if np.any(np.diff(rho[half_mld_ind::]) < 0): if verbose: print( 'Need to homogenize discontinuity at base of previous mixed layer' ) # get rid of discontinuity at base of previous mixed layer # homogenize the region of water from mld/2 to z* # z* is the shallowest value (> mld/2) such that the homogenized rho <= rho(z*) zstar_ind = mld_ind.copy() while np.mean(rho[half_mld_ind:zstar_ind]) >= rho[zstar_ind]: if verbose: print('Deepening z*...') zstar_ind += 1 T[half_mld_ind:zstar_ind] = np.mean(T[half_mld_ind:zstar_ind]) S[half_mld_ind:zstar_ind] = np.mean(S[half_mld_ind:zstar_ind]) if tracer is not None: tracer[:, half_mld_ind:zstar_ind] = np.atleast_2d( np.mean(tracer[:, half_mld_ind:zstar_ind], axis=1)).T elif verbose: print('No need to homogenize base of previous mixed layer') # update momentum # first rotate momentum halfway angle = -f * dt / 2 # currently assuming this is in rad U, V = rotate(angle, U, V) # then add wind stress mld_ind = get_mld_ind(T, S, U, V, z) mld = z[mld_ind] U[0:mld_ind] += tau_x / mld / rho0 * dz * dt V[0:mld_ind] += tau_y / mld / rho0 * dz * dt # then rotate second half U, V = rotate(angle, U, V) if use_static_stability: T, S, U, V, tracer = static_stability(T, S, U, V, z, T0, S0, rho0, alpha, beta, tracer=tracer, verbose=verbose) if use_mixed_layer_stability: T, S, U, V, tracer = mixed_layer_stability(T, S, U, V, z, T0, S0, rho0, alpha, beta, tracer=tracer, verbose=verbose) if use_shear_stability: T, S, U, V, tracer = shear_stability(T, S, U, V, z, T0, S0, rho0, alpha, beta, tracer=tracer, verbose=verbose) if vert_diffusivity is not None: dTdt = np.zeros(len(T)) dTdt[1:-1] = np.diff(np.diff(T)) / dz**2 T += vert_diffusivity * dTdt * dt dSdt = np.zeros(len(S)) dSdt[1:-1] = np.diff(np.diff(S)) / dz**2 S += vert_diffusivity * dSdt * dt dUdt = np.zeros(len(U)) dUdt[1:-1] = np.diff(np.diff(U)) / dz**2 U += vert_diffusivity * dUdt * dt dVdt = np.zeros(len(V)) dVdt[1:-1] = np.diff(np.diff(V)) / dz**2 V += vert_diffusivity * dSdt * dt if tracer is not None: dtdt = np.zeros(shape=tracer.shape) dtdt[:, 1:-1] = np.diff(np.diff(tracer, axis=1), axis=1) / dz**2 tracer += vert_diffusivity * dtdt * dt return_variables = ( T, S, U, V, ) if tracer is not None: return_variables += (tracer, ) if return_MLD: return_variables += (get_mld(T, S, U, V, z), ) return return_variables
import seawater as gsw import ctd import practical_salinity as pracsal import numpy as np alpha = np.vectorize(lambda sa, ct, p : gsw.alpha(sa,ct,p)) alpha_wrt_t_exact = np.vectorize(lambda sa,t,p : gsw.alpha_wrt_t_exact(sa,t,p)) beta_const_t_exact = np.vectorize(lambda sa,t,p : gsw.beta_const_t_exact(sa,t,p)) beta = np.vectorize(lambda sa,ct,p : gsw.beta(sa,ct,p)) cp_t_exact = np.vectorize(lambda sa,t,p : gsw.cp_t_exact(sa,t,p)) ct_freezing = np.vectorize(lambda sa,p,saturation_fraction : gsw.ct_freezing(sa,p,saturation_fraction)) ct_from_pt = np.vectorize(lambda sa,pt : gsw.ct_from_pt(sa,pt)) ct_from_t = np.vectorize(lambda sa,t,p : gsw.ct_from_t(sa,t,p)) deltasa_from_sp = np.vectorize(lambda sp,p,lon,lat: gsw.deltasa_from_sp(sp,p,lon,lat)) delta_sa_ref = np.vectorize(lambda p,lon,lat : gsw.delta_sa_ref(p,lon,lat)) dynamic_enthalpy = np.vectorize(lambda sa,ct,p : gsw.dynamic_enthalpy(sa,ct,p)) enthalpy = np.vectorize(lambda sa,ct,p : gsw.enthalpy(sa,ct,p)) enthalpy_t_exact = np.vectorize(lambda sa,t,p : gsw.enthalpy_t_exact(sa,t,p))
hefti = heft*1. # empta = empt*1. emptp = empt*1. empti = empt*1. # # Compute density rhon[t,...] = eosNeutral(tost.data, sost.data) - 1000. rhon[t,...].mask = maski rhon[t,...] = maskVal(rhon[t,...], valmask) rhonl = rhon.data[t,...] # Compute buoyancy/density flux as mass fluxes in kg/m2/s (SI units) # convwf : kg/m2/s = mm/s -> m/s convwf = 1.e-3 pres = tost.data*0. denflxh[t,...] = (-sw.alpha(sost.data,tost.data,pres)/sw.cp(sost.data,tost.data,pres))*heft.data if empsw == 0: denflxw[t,...] = (rhonl+1000.)*sw.beta(sost.data,tost.data,pres)*sost.data*empt.data*convwf else: denflxw[t,...] = (rhonl+1000.)*sw.beta(sost.data,tost.data,pres)*empt.data*convwf denflx [t,...] = denflxh[t,...] + denflxw[t,...] denflx [t,...].mask = maski denflxh[t,...].mask = maski denflxw[t,...].mask = maski denflx [t,...] = maskVal(denflx [t,...], valmask) denflxh[t,...] = maskVal(denflxh[t,...], valmask) denflxw[t,...] = maskVal(denflxw[t,...], valmask) dflxh = denflxh.data[t,:,:] dflxw = denflxw.data[t,:,:] # # Transformation (integral of density flux on density outcrops)
def test(fileout='python-test.txt'): r"""Copy of the Matlab test. Modifications: Phil Morgan 03-12-12. Lindsay Pender, Converted to ITS-90. """ f = open(fileout, 'w') asterisks = '*' * 76 f.write(asterisks) f.write('\n TEST REPORT ') f.write('\n') f.write('\n SEA WATER LIBRARY %s' % sw.__version__) f.write('\n') # Show some info about this Python. f.write('\npython version: %s' % sys.version) f.write('\n on %s computer %s' % (uname()[0], uname()[-1])) f.write('\n') f.write('\n') f.write(asctime(localtime())) f.write('\n') f.write('\n') # Test main module ptmp. f.write('\n%s' % asterisks) f.write('\n** TESTING MODULE: ptmp') f.write('\n** and SUB-MODULE: adtg') f.write('\n%s' % asterisks) f.write('\n') f.write('\n') # Test 1 - data from Unesco 1983 p45. T = np.array([[0, 0, 0, 0, 0, 0], [10, 10, 10, 10, 10, 10], [20, 20, 20, 20, 20, 20], [30, 30, 30, 30, 30, 30], [40, 40, 40, 40, 40, 40]]) T = T / 1.00024 S = np.array([[25, 25, 25, 35, 35, 35], [25, 25, 25, 35, 35, 35], [25, 25, 25, 35, 35, 35], [25, 25, 25, 35, 35, 35], [25, 25, 25, 35, 35, 35]]) P = np.array([[0, 5000, 10000, 0, 5000, 10000], [0, 5000, 10000, 0, 5000, 10000], [0, 5000, 10000, 0, 5000, 10000], [0, 5000, 10000, 0, 5000, 10000], [0, 5000, 10000, 0, 5000, 10000]]) Pr = np.array([0, 0, 0, 0, 0, 0]) UN_ptmp = np.array([[0, -0.3061, -0.9667, 0, -0.3856, -1.0974], [10, 9.3531, 8.4684, 10, 9.2906, 8.3643], [20, 19.0438, 17.9426, 20, 18.9985, 17.8654], [30, 28.7512, 27.4353, 30, 28.7231, 27.3851], [40, 38.4607, 36.9254, 40, 38.4498, 36.9023]]) PT = sw.ptmp(S, T, P, Pr) * 1.00024 # Display results. f.write('\n') f.write('\n%s' % asterisks) f.write('\nComparison of accepted values from UNESCO 1983 ') f.write('\n (Unesco Tech. Paper in Marine Sci. No. 44, p45)') f.write('\n%s' % asterisks) f.write('\n') m, n = S.shape # TODO: so many loops there must be a better way. for icol in range(0, n): f.write('\n Sal Temp Press PTMP ptmp') f.write('\n (psu) (C) (db) (C) (C)\n') result = np.vstack((S[:, icol], T[:, icol], P[:, icol], UN_ptmp[:, icol], PT[:, icol])) for iline in range(0, m): f.write(" %4.0f %4.0f %5.0f %8.4f %11.5f\n" % tuple(result[:, iline])) # Test main module svan. f.write('\n%s' % asterisks) f.write('\n** TESTING MODULE: svan') f.write('\n** and SUB-MODULE: dens dens0 smow seck pden ptmp') f.write('\n%s' % asterisks) # Test data FROM: Unesco Tech. Paper in Marine Sci. No. 44, p22. s = np.array([0, 0, 0, 0, 35, 35, 35, 35]) p = np.array([0, 10000, 0, 10000, 0, 10000, 0, 10000]) t = np.array([0, 0, 30, 30, 0, 0, 30, 30]) / 1.00024 UN_svan = np.array([2749.54, 2288.61, 3170.58, 3147.85, 0.0, 0.00, 607.14, 916.34]) SVAN = sw.svan(s, t, p) # DISPLAY RESULTS f.write('\n') f.write('\n%s' % asterisks) f.write('\n') f.write('\nComparison of accepted values from UNESCO 1983') f.write('\n (Unesco Tech. Paper in Marine Sci. No. 44, p22)') f.write('\n%s' % asterisks) f.write('\n') f.write('\n Sal Temp Press SVAN svan') f.write('\n (psu) (C) (db) (1e-8*m3/kg) (1e-8*m3/kg)\n') result = np.vstack([s, t, p, UN_svan, 1e+8 * SVAN]) for iline in range(0, len(SVAN)): f.write(" %4.0f %4.0f %5.0f %11.2f %11.3f\n" % tuple(result[:, iline])) # Test main module salt. f.write('\n%s' % asterisks) f.write('\n** TESTING MODULE: salt') f.write('\n** and SUB-MODULE: salrt salrp sals') f.write('\n%s' % asterisks) f.write('\n') # Test 1 - data from Unesco 1983 p9. R = np.array([1, 1.2, 0.65]) # cndr = R. T = np.array([15, 20, 5]) / 1.00024 P = np.array([0, 2000, 1500]) #Rt = np.array([ 1, 1.0568875, 0.81705885]) UN_S = np.array([35, 37.245628, 27.995347]) S = sw.salt(R, T, P) # Display results. f.write('\n') f.write('\n%s' % asterisks) f.write('\nComparison of accepted values from UNESCO 1983 ') f.write('\n(Unesco Tech. Paper in Marine Sci. No. 44, p9)') f.write('\n%s' % asterisks) f.write('\n') f.write('\n Temp Press R S salt') f.write('\n (C) (db) (no units) (psu) (psu)\n') table = np.vstack([T, P, R, UN_S, S]) m, n = table.shape for iline in range(0, n): f.write(" %4.0f %4.0f %8.2f %11.6f %14.7f\n" % tuple(table[:, iline])) # Test main module cndr. f.write('\n%s' % asterisks) f.write('\n** TESTING MODULE: cndr') f.write('\n** and SUB-MODULE: salds') f.write('\n%s' % asterisks) # Test 1 - data from Unesco 1983 p9. T = np.array([0, 10, 0, 10, 10, 30]) / 1.00024 P = np.array([0, 0, 1000, 1000, 0, 0]) S = np.array([25, 25, 25, 25, 40, 40]) UN_R = np.array([0.498088, 0.654990, 0.506244, 0.662975, 1.000073, 1.529967]) R = sw.cndr(S, T, P) # Display results. f.write('\n') f.write('\n%s' % asterisks) f.write('\nComparison of accepted values from UNESCO 1983 ') f.write('\n (Unesco Tech. Paper in Marine Sci. No. 44, p14)') f.write('\n%s' % asterisks) f.write('\n') f.write('\n') f.write('\n Temp Press S cndr cndr') f.write('\n (C) (db) (psu) (no units) (no units)\n') table = np.vstack([T, P, S, UN_R, R]) m, n = table.shape for iline in range(0, n): f.write(" %4.0f %4.0f %8.6f %11.6f %14.8f\n" % tuple(table[:, iline])) # Test main module depth. f.write('\n%s' % asterisks) f.write('\n** TESTING MODULE: depth') f.write('\n%s' % asterisks) # Test data - matrix "pressure", vector "lat" Unesco 1983 data p30. lat = np.array([0, 30, 45, 90]) P = np.array([[500, 500, 500, 500], [5000, 5000, 5000, 5000], [10000, 10000, 10000, 10000]]) UN_dpth = np.array([[496.65, 496.00, 495.34, 494.03], [4915.04, 4908.56, 4902.08, 4889.13], [9725.47, 9712.65, 9699.84, 9674.23]]) dpth = sw.dpth(P, lat) # Display results. f.write('\n') f.write('\n%s' % asterisks) f.write('\nComparison of accepted values from Unesco 1983 ') f.write('\n(Unesco Tech. Paper in Marine Sci. No. 44, p28)') f.write('\n%s' % asterisks) f.write('\n') f.write('\n') for irow in range(0, 3): f.write('\n Lat Press DPTH dpth') f.write('\n (degree) (db) (meter) (meter)\n') table = np.vstack([lat, P[irow, :], UN_dpth[irow, :], dpth[irow, :]]) m, n = table.shape for iline in range(0, n): f.write(" %6.3f %6.0f %8.2f %8.3f\n" % tuple(table[:, iline])) # Test main module fp. f.write('\n%s' % asterisks) f.write('\n** TESTING MODULE: fp') f.write('\n%s' % asterisks) # Test 1 - UNESCO data p.30. S = np.array([[5, 10, 15, 20, 25, 30, 35, 40], [5, 10, 15, 20, 25, 30, 35, 40]]) P = np.array([[0, 0, 0, 0, 0, 0, 0, 0], [500, 500, 500, 500, 500, 500, 500, 500]]) UN_fp = np.array([[-0.274, -0.542, -0.812, -1.083, -1.358, -1.638, -1.922, -2.212], [-0.650, -0.919, -1.188, -1.460, -1.735, -2.014, -2.299, -2.589]]) FP = sw.fp(S, P) # Display results. f.write('\n') f.write('\n%s' % asterisks) f.write('\nComparison of accepted values from UNESCO 1983 ') f.write('\n (Unesco Tech. Paper in Marine Sci. No. 44, p30)') f.write('\n%s' % asterisks) f.write('\n') f.write('\n') for irow in range(0, 2): f.write('\n Sal Press fp fp') f.write('\n (psu) (db) (C) (C)\n') table = np.vstack([S[irow, :], P[irow, :], UN_fp[irow, :], FP[irow, :]]) m, n = table.shape for iline in range(0, n): f.write(" %4.0f %5.0f %8.3f %11.4f\n" % tuple(table[:, iline])) # Test main module cp. f.write('\n%s' % asterisks) f.write('\n** TESTING MODULE: cp') f.write('\n%s' % asterisks) # Test 1. # Data from Pond and Pickard Intro. Dynamical Oceanography 2nd ed. 1986 T = np.array([[0, 0, 0, 0, 0, 0], [10, 10, 10, 10, 10, 10], [20, 20, 20, 20, 20, 20], [30, 30, 30, 30, 30, 30], [40, 40, 40, 40, 40, 40]]) / 1.00024 S = np.array([[25, 25, 25, 35, 35, 35], [25, 25, 25, 35, 35, 35], [25, 25, 25, 35, 35, 35], [25, 25, 25, 35, 35, 35], [25, 25, 25, 35, 35, 35]]) P = np.array([[0, 5000, 10000, 0, 5000, 10000], [0, 5000, 10000, 0, 5000, 10000], [0, 5000, 10000, 0, 5000, 10000], [0, 5000, 10000, 0, 5000, 10000], [0, 5000, 10000, 0, 5000, 10000]]) UN_cp = np.array([[4048.4, 3896.3, 3807.7, 3986.5, 3849.3, 3769.1], [4041.8, 3919.6, 3842.3, 3986.3, 3874.7, 3804.4], [4044.8, 3938.6, 3866.7, 3993.9, 3895.0, 3828.3], [4049.1, 3952.0, 3883.0, 4000.7, 3909.2, 3844.3], [4051.2, 3966.1, 3905.9, 4003.5, 3923.9, 3868.3]]) CP = sw.cp(S, T, P) # Display results. f.write('\n') f.write('\n%s' % asterisks) f.write('\nComparison of accepted values from UNESCO 1983 ') f.write('\n (Unesco Tech. Paper in Marine Sci. No. 44, p37)') f.write('\n%s' % asterisks) f.write('\n') m, n = S.shape f.write('\n') for icol in range(0, n): f.write('\n Sal Temp Press Cp cp') f.write('\n (psu) (C) (db) (J/kg.C) (J/kg.C)\n') result = np.vstack([S[:, icol], T[:, icol], P[:, icol], UN_cp[:, icol], CP[:, icol]]) for iline in range(0, m): f.write(" %4.0f %4.0f %5.0f %8.1f %11.2f\n" % tuple(result[:, iline])) # Test main module svel. f.write('\n%s' % asterisks) f.write('\n** TESTING MODULE: svel') f.write('\n%s' % asterisks) # Test 1. # Data from Pond and Pickard Intro. Dynamical Oceanography 2nd ed. 1986 T = np.array([[0, 0, 0, 0, 0, 0], [10, 10, 10, 10, 10, 10], [20, 20, 20, 20, 20, 20], [30, 30, 30, 30, 30, 30], [40, 40, 40, 40, 40, 40]]) / 1.00024 S = np.array([[25, 25, 25, 35, 35, 35], [25, 25, 25, 35, 35, 35], [25, 25, 25, 35, 35, 35], [25, 25, 25, 35, 35, 35], [25, 25, 25, 35, 35, 35]]) P = np.array([[0, 5000, 10000, 0, 5000, 10000], [0, 5000, 10000, 0, 5000, 10000], [0, 5000, 10000, 0, 5000, 10000], [0, 5000, 10000, 0, 5000, 10000], [0, 5000, 10000, 0, 5000, 10000]]) UN_svel = np.array([[1435.8, 1520.4, 1610.4, 1449.1, 1534.0, 1623.2], [1477.7, 1561.3, 1647.4, 1489.8, 1573.4, 1659.0], [1510.3, 1593.6, 1676.8, 1521.5, 1604.5, 1687.2], [1535.2, 1619.0, 1700.6, 1545.6, 1629.0, 1710.1], [1553.4, 1638.0, 1719.2, 1563.2, 1647.3, 1727.8]]) SVEL = sw.svel(S, T, P) # Display results. f.write('\n') f.write('\n%s' % asterisks) f.write('\nComparison of accepted values from UNESCO 1983 ') f.write('\n (Unesco Tech. Paper in Marine Sci. No. 44, p50)') f.write('\n%s' % asterisks) f.write('\n') m, n = SVEL.shape f.write('\n') for icol in range(0, n): f.write('\n Sal Temp Press SVEL svel') f.write('\n (psu) (C) (db) (m/s) (m/s)\n') result = np.vstack([S[:, icol], T[:, icol], P[:, icol], UN_svel[:, icol], SVEL[:, icol]]) for iline in range(0, m): f.write(" %4.0f %4.0f %5.0f %8.1f %11.3f\n" % tuple(result[:, iline])) # Test submodules alpha beta aonb. f.write('\n%s' % asterisks) f.write('\n** and SUB-MODULE: alpha beta aonb') f.write('\n%s' % asterisks) # Data from McDouogall 1987. s = 40 PT = 10 p = 4000 beta_lit = 0.72088e-03 aonb_lit = 0.34763 alpha_lit = aonb_lit * beta_lit BETA = sw.beta(s, PT, p, pt=True) ALPHA = sw.alpha(s, PT, p, pt=True) AONB = sw.aonb(s, PT, p, pt=True) # Display results. f.write('\n') f.write('\n%s' % asterisks) f.write('\nComparison of accepted values from MCDOUGALL 1987 ') f.write('\n%s' % asterisks) f.write('\n') f.write('\n') f.write('\n Sal Temp Press BETA beta') f.write('\n (psu) (C) (db) (psu^-1) (psu^-1)\n') table = np.hstack([s, PT, p, beta_lit, BETA]) f.write(" %4.0f %4.0f %5.0f %11.4e %11.5e\n" % tuple(table)) f.write('\n Sal Temp Press AONB aonb') f.write('\n (psu) (C) (db) (psu C^-1) (psu C^-1)\n') table = np.hstack([s, PT, p, aonb_lit, AONB]) f.write(" %4.0f %4.0f %5.0f %8.5f %11.6f\n" % tuple(table)) f.write('\n Sal Temp Press ALPHA alpha') f.write('\n (psu) (C) (db) (psu^-1) (psu^-1)\n') table = np.hstack([s, PT, p, alpha_lit, ALPHA]) f.write(" %4.0f %4.0f %5.0f %11.4e %11.4e\n" % tuple(table)) # Test main moduleS satO2 satN2 satAr. f.write('\n%s' % asterisks) f.write('\n** TESTING MODULE: satO2 satN2 satAr') f.write('\n%s' % asterisks) f.write('\n') # Data from Weiss 1970. T = np.array([[-1, -1], [10, 10], [20, 20], [40, 40]]) / 1.00024 S = np.array([[20, 40], [20, 40], [20, 40], [20, 40]]) lit_O2 = np.array([[9.162, 7.984], [6.950, 6.121], [5.644, 5.015], [4.050, 3.656]]) lit_N2 = np.array([[16.28, 14.01], [12.64, 11.01], [10.47, 9.21], [7.78, 6.95]]) lit_Ar = np.array([[0.4456, 0.3877], [0.3397, 0.2989], [0.2766, 0.2457], [0.1986, 0.1794]]) O2 = sw.satO2(S, T) N2 = sw.satN2(S, T) Ar = sw.satAr(S, T) # Display results. f.write('\n') f.write('\n%s' % asterisks) f.write('\nComparison of accepted values from Weiss, R.F. 1979 ') f.write('\n"The solubility of nitrogen, oxygen and argon in water') f.write('\n and seawater." Deep-Sea Research., 1970, Vol 17, pp721-735.') f.write('\n%s' % asterisks) f.write('\n') m, n = S.shape f.write('\n') for icol in range(0, n): f.write('\n Sal Temp O2 satO2') f.write('\n (psu) (C) (ml/l) (ml/l)\n') result = np.vstack([S[:, icol], T[:, icol], lit_O2[:, icol], O2[:, icol]]) for iline in range(0, m): f.write(" %4.0f %4.0f %8.2f %9.3f\n" % tuple(result[:, iline])) for icol in range(0, n): f.write('\n Sal Temp N2 satN2') f.write('\n (psu) (C) (ml/l) (ml/l)\n') result = np.vstack([S[:, icol], T[:, icol], lit_N2[:, icol], N2[:, icol]]) for iline in range(0, m): f.write(" %4.0f %4.0f %8.2f %9.3f\n" % tuple(result[:, iline])) for icol in range(0, n): f.write('\n Sal Temp Ar satAr') f.write('\n (psu) (C) (ml/l) (ml/l)\n') result = np.vstack([S[:, icol], T[:, icol], lit_Ar[:, icol], Ar[:, icol]]) for iline in range(0, m): f.write(" %4.0f %4.0f %8.4f %9.4f\n" % tuple(result[:, iline]))
import numpy as np, matplotlib.pyplot as plt, seawater as sw, mPWP as PWP, time from datetime import datetime # set up initial parameters (these are also set as defaults in the PWP code, so don't need to put them in) T0 = 0 # reference temperature (degC) S0 = 34 # reference salinity (parts per thousand; ppt) rho0 = 1025 # reference density (kg m^-3) alpha = -sw.alpha( S0, T0, 0) * rho0 # thermal expansion coefficient (kg m^-3 degC^-1) beta = sw.beta(S0, T0, 0) * rho0 # haline contraction coefficient (kg m^-3 ppt^-1 ) latitude = -75 # degrees north f = sw.f(latitude) # planetary vorticity fwflux1 = np.loadtxt('/home/erobo/ThompsonResearch/Data/fwflux1_oneyear.csv', delimiter=',') qnet1 = np.loadtxt('/home/erobo/ThompsonResearch/Data/qnet1_oneyear.csv', delimiter=',') taux1 = np.loadtxt('/home/erobo/ThompsonResearch/Data/taux1_oneyear.csv', delimiter=',') tauy1 = np.loadtxt('/home/erobo/ThompsonResearch/Data/tauy1_oneyear.csv', delimiter=',') temp_profile = np.loadtxt( '/home/erobo/ThompsonResearch/Data/temp_profile_snapshot.txt') salt_profile = np.loadtxt( '/home/erobo/ThompsonResearch/Data/salt_profile_snapshot.txt') depth_profile = np.loadtxt(