Ejemplo n.º 1
0
 def __init__(self, flag_classify, args):
     super(SEC_for_saliency, self).__init__()
     self.net = sec.SEC_NN(args.batch_size, args.num_classes,
                           args.output_size, args.no_bg, False)
     self.net.load_state_dict(torch.load("models/sec_rename_CPU.pth"),
                              strict=False)
     self.net.train(False)
     self.classify = flag_classify
Ejemplo n.º 2
0
    def __init__(self, flag_classify, args):
        super(sec_for_saliency, self).__init__()
        net = sec.SEC_NN(args.batch_size, args.num_classes, args.output_size,
                         args.no_bg, False)
        #net.load_state_dict(torch.load("models/sec_rename_CPU.pth"), strict = True)
        net.load_state_dict(torch.load("models/01/top_val_acc_SEC_CPU.pth"),
                            strict=True)
        net.train(False)
        self.classify = flag_classify
        self.classifier = net.mask2label_pool
        self.features = net.features

        if self.classify:
            self.classifier = net.mask2label_pool
Ejemplo n.º 3
0
    elif args.model == 'my_resnet':
        args.batch_size = 30
    elif args.model == 'decoupled':
        args.batch_size = 38

model_path = model_path + '.pth'

# if args.origin_size:
#     args.batch_size = 1

if args.model == 'SEC':
    # model_url = 'https://download.pytorch.org/models/vgg16-397923af.pth' # 'vgg16'
    # model_path = 'models/0506/top_val_rec_SEC_05_CPU.pth' # 'vgg16'
    args.input_size = [321, 321]
    args.output_size = [41, 41]
    net = sec.SEC_NN(args.batch_size, args.num_classes, args.output_size,
                     args.no_bg, flag_use_cuda)
    net.load_state_dict(torch.load(model_path), strict=True)

elif args.model == 'resnet':
    net = resnet.resnet50(pretrained=False, num_classes=args.num_classes)
    net.load_state_dict(torch.load(model_path), strict=True)
    features_blob = []
    params = list(net.parameters())
    fc_weight = params[-2]

    def hook_feature(module, input, output):
        features_blob.append(output.data)

    net._modules.get('layer4').register_forward_hook(hook_feature)

elif args.model == 'my_resnet':