Ejemplo n.º 1
0
def build_faster_rcnn_classification_loss(loss_config):
    """Builds a classification loss for Faster RCNN based on the loss config.

  Args:
    loss_config: A losses_pb2.ClassificationLoss object.

  Returns:
    Loss based on the config.

  Raises:
    ValueError: On invalid loss_config.
  """
    if not isinstance(loss_config, losses_pb2.ClassificationLoss):
        raise ValueError(
            'loss_config not of type losses_pb2.ClassificationLoss.')

    loss_type = loss_config.WhichOneof('classification_loss')

    if loss_type == 'weighted_sigmoid':
        return losses.WeightedSigmoidClassificationLoss()
    if loss_type == 'weighted_softmax':
        config = loss_config.weighted_softmax
        return losses.WeightedSoftmaxClassificationLoss(
            logit_scale=config.logit_scale)

    # By default, Faster RCNN second stage classifier uses Softmax loss
    # with anchor-wise outputs.
    config = loss_config.weighted_softmax
    return losses.WeightedSoftmaxClassificationLoss(
        logit_scale=config.logit_scale)
Ejemplo n.º 2
0
def _build_classification_loss(loss_config):
    """Builds a classification loss based on the loss config.

  Args:
    loss_config: A losses_pb2.ClassificationLoss object.

  Returns:
    Loss based on the config.

  Raises:
    ValueError: On invalid loss_config.
  """
    if not isinstance(loss_config, losses_pb2.ClassificationLoss):
        raise ValueError(
            'loss_config not of type losses_pb2.ClassificationLoss.')

    loss_type = loss_config.WhichOneof(
        'classification_loss')  #weighted_sigmoid_focal

    if loss_type == 'weighted_sigmoid':
        return losses.WeightedSigmoidClassificationLoss()

    if loss_type == 'weighted_sigmoid_focal':
        config = loss_config.weighted_sigmoid_focal
        # alpha = None
        # if config.HasField('alpha'):
        #   alpha = config.alpha
        if config.alpha > 0:
            alpha = config.alpha
        else:
            alpha = None
        return losses.SigmoidFocalClassificationLoss(gamma=config.gamma,
                                                     alpha=alpha)
    if loss_type == 'weighted_softmax_focal':
        config = loss_config.weighted_softmax_focal
        # alpha = None
        # if config.HasField('alpha'):
        #   alpha = config.alpha
        if config.alpha > 0:
            alpha = config.alpha
        else:
            alpha = None
        return losses.SoftmaxFocalClassificationLoss(gamma=config.gamma,
                                                     alpha=alpha)
    if loss_type == 'weighted_ghm':
        config = loss_config.weighted_ghm
        return GHMCLoss(bins=config.bins, momentum=config.momentum)

    if loss_type == 'weighted_softmax':
        config = loss_config.weighted_softmax
        return losses.WeightedSoftmaxClassificationLoss(
            logit_scale=config.logit_scale)

    if loss_type == 'bootstrapped_sigmoid':
        config = loss_config.bootstrapped_sigmoid
        return losses.BootstrappedSigmoidClassificationLoss(
            alpha=config.alpha,
            bootstrap_type=('hard' if config.hard_bootstrap else 'soft'))

    raise ValueError('Empty loss config.')