Ejemplo n.º 1
0
def viz_outs_grads(model, idx=1):
    x, y, _ = make_data(K.int_shape(model.input), model.layers[2].units)
    grads = get_gradients(model, idx, x, y)
    kws = dict(n_rows=8, title='grads')

    features_1D(grads[0], show_borders=False, **kws)
    features_2D(grads, norm=(-1e-4, 1e-4), **kws)
Ejemplo n.º 2
0
def _test_outputs_gradients(model):
    x, y, _ = make_data(K.int_shape(model.input), model.layers[2].units)
    name = model.layers[1].name
    grads_all = get_gradients(model, name, x, y, mode='outputs')
    grads_last = get_gradients(model, 2, x, y, mode='outputs')

    kwargs1 = dict(n_rows=None,
                   show_xy_ticks=[0, 0],
                   show_borders=True,
                   max_timesteps=50,
                   title_mode='grads')
    kwargs2 = dict(n_rows=2,
                   show_xy_ticks=[1, 1],
                   show_borders=False,
                   max_timesteps=None)

    features_1D(grads_all[0], **kwargs1)
    features_1D(grads_all[:1], **kwargs1)
    features_1D(grads_all, **kwargs2)
    features_2D(grads_all[0], norm=(-.01, .01), show_colorbar=True, **kwargs1)
    features_2D(grads_all, norm=None, reflect_half=True, **kwargs2)
    features_0D(grads_last, marker='o', color=None, title_mode='grads')
    features_0D(grads_last, marker='x', color='blue', ylims=(-.1, .1))
    features_hist(grads_all, bins=100, xlims=(-.01, .01), title="Outs hists")
    features_hist(grads_all, bins=100, n_rows=4)
    print('\n')  # improve separation
Ejemplo n.º 3
0
def _test_outputs(model):
    x, *_ = make_data(K.int_shape(model.input), model.layers[2].units)
    outs = get_outputs(model, 1, x)
    features_1D(outs[:1], show_y_zero=True)
    features_1D(outs[0])
    features_2D(outs)
Ejemplo n.º 4
0
def test_misc():  # test miscellaneous functionalities
    units = 6
    batch_shape = (8, 100, 2 * units)

    reset_seeds(reset_graph_with_backend=K)
    model = make_model(GRU,
                       batch_shape,
                       activation='relu',
                       recurrent_dropout=0.3,
                       IMPORTS=IMPORTS)
    x, y, sw = make_data(batch_shape, units)
    model.train_on_batch(x, y, sw)

    weights_norm(model, 'gru', omit_names='bias', verbose=1)
    weights_norm(model, ['gru', 1, (1, 1)], norm_fn=np.abs)
    stats = weights_norm(model, 'gru')
    weights_norm(model, 'gru', _dict=stats)

    grads = get_gradients(model, 1, x, y)
    get_gradients(model, 1, x, y, as_dict=True)
    get_gradients(model, ['gru', 1], x, y)
    get_outputs(model, ['gru', 1], x)

    features_1D(grads,
                subplot_samples=True,
                tight=True,
                borderwidth=2,
                share_xy=False)
    with tempdir() as dirpath:
        features_0D(grads[0], savepath=os.path.join(dirpath, 'img.png'))
    with tempdir() as dirpath:
        features_1D(grads[0],
                    subplot_samples=True,
                    annotations=[1, 'pi'],
                    savepath=os.path.join(dirpath, 'img.png'))
    features_2D(grads.T, n_rows=1.5, tight=True, borderwidth=2)
    with tempdir() as dirpath:
        features_2D(grads.T[:, :, 0],
                    norm='auto',
                    savepath=os.path.join(dirpath, 'img.png'))
    with tempdir() as dirpath:
        features_hist(grads,
                      show_borders=False,
                      borderwidth=1,
                      annotations=[0],
                      show_xy_ticks=[0, 0],
                      share_xy=(1, 1),
                      title="grads",
                      savepath=os.path.join(dirpath, 'img.png'))
    with tempdir() as dirpath:
        features_hist_v2(list(grads[:, :4, :3]),
                         colnames=list('abcd'),
                         show_borders=False,
                         xlims=(-.01, .01),
                         ylim=100,
                         borderwidth=1,
                         show_xy_ticks=[0, 0],
                         side_annot='row',
                         share_xy=True,
                         title="Grads",
                         savepath=os.path.join(dirpath, 'img.png'))
    features_hist(grads, center_zero=True, xlims=(-1, 1), share_xy=0)
    features_hist_v2(list(grads[:, :4, :3]),
                     center_zero=True,
                     xlims=(-1, 1),
                     share_xy=(False, False))
    with tempdir() as dirpath:
        rnn_histogram(model,
                      1,
                      show_xy_ticks=[0, 0],
                      equate_axes=2,
                      savepath=os.path.join(dirpath, 'img.png'))
    rnn_histogram(model,
                  1,
                  equate_axes=False,
                  configs={
                      'tight': dict(left=0, right=1),
                      'plot': dict(color='red'),
                      'title': dict(fontsize=14),
                  })
    rnn_heatmap(model, 1, cmap=None, normalize=True, show_borders=False)
    rnn_heatmap(model, 1, cmap=None, norm='auto', absolute_value=True)
    rnn_heatmap(model, 1, norm=None)
    with tempdir() as dirpath:
        rnn_heatmap(model,
                    1,
                    norm=(-.004, .004),
                    savepath=os.path.join(dirpath, 'img.png'))

    hist_clipped(grads, peaks_to_clip=2)
    _, ax = plt.subplots(1, 1)
    hist_clipped(grads, peaks_to_clip=2, ax=ax, annot_kw=dict(fontsize=15))

    get_full_name(model, 'gru')
    get_full_name(model, 1)
    pass_on_error(get_full_name, model, 'croc')

    get_weights(model, 'gru', as_dict=False)
    get_weights(model, 'gru', as_dict=True)
    get_weights(model, 'gru/bias')
    get_weights(model, ['gru', 1, (1, 1)])
    pass_on_error(get_weights, model, 'gru/goo')

    get_weights(model, '*')
    get_gradients(model, '*', x, y)
    get_outputs(model, '*', x)

    from see_rnn.utils import _filter_duplicates_by_keys
    keys, data = _filter_duplicates_by_keys(list('abbc'), [1, 2, 3, 4])
    assert keys == ['a', 'b', 'c']
    assert data == [1, 2, 4]
    keys, data = _filter_duplicates_by_keys(list('abbc'), [1, 2, 3, 4],
                                            [5, 6, 7, 8])
    assert keys == ['a', 'b', 'c']
    assert data[0] == [1, 2, 4] and data[1] == [5, 6, 8]

    from see_rnn.inspect_gen import get_layer, detect_nans
    get_layer(model, 'gru')
    get_rnn_weights(model, 1, concat_gates=False, as_tensors=True)
    rnn_heatmap(model, 1, input_data=x, labels=y, mode='weights')
    _test_prefetched_data(model)

    # test NaN/Inf detection
    nan_txt = detect_nans(np.array([1] * 9999 + [np.nan])).replace('\n', ' ')
    print(nan_txt)  # case: print as quantity
    data = np.array([np.nan, np.inf, -np.inf, 0])
    print(detect_nans(data, include_inf=True))
    print(detect_nans(data, include_inf=False))
    data = np.array([np.inf, 0])
    print(detect_nans(data, include_inf=True))
    detect_nans(np.array([0]))

    K.set_value(model.optimizer.lr, 1e12)
    train_model(model, iterations=10)
    rnn_histogram(model, 1)
    rnn_heatmap(model, 1)

    del model
    reset_seeds(reset_graph_with_backend=K)

    # test SimpleRNN & other
    _model = make_model(SimpleRNN,
                        batch_shape,
                        units=128,
                        use_bias=False,
                        IMPORTS=IMPORTS)
    train_model(_model, iterations=1)  # TF2-Keras-Graph bug workaround
    rnn_histogram(_model, 1)  # test _pretty_hist
    K.set_value(_model.optimizer.lr, 1e50)  # force NaNs
    train_model(_model, iterations=20)
    rnn_heatmap(_model, 1)
    data = get_rnn_weights(_model, 1)
    rnn_heatmap(_model, 1, input_data=x, labels=y, data=data)
    os.environ["TF_KERAS"] = '0'
    get_rnn_weights(_model, 1, concat_gates=False)
    del _model

    assert True
    cprint("\n<< MISC TESTS PASSED >>\n", 'green')
Ejemplo n.º 5
0
C['model']['batch_shape'] = (batch_size, window_size, 1)

# eval_fn: need 'predict' for visuals and custom metrics
# key_metric: f1_score for imbalanced binary classification
# val_metrics: true positive rate & true negative rate are "class accuracies",
#              i.e. class-1 acc & class-2 acc
# plot_first_pane_max_vals: plot only validation loss in first plot window,
# the rest on second, to avoid clutter and keep losses together
# class_weights: "normal" is the minority class; 3x more "abnormal" samples
# others: see utils.py
C['traingen'].update(
    dict(
        eval_fn='predict',
        key_metric='f1_score',
        val_metrics=('loss', 'tnr', 'tpr'),
        plot_first_pane_max_vals=1,
        class_weights={
            0: 3,
            1: 1
        },
    ))
tg = init_session(C, make_timeseries_classifier)
#%%# Visualize 24 samples #####################################################
data = tg.val_datagen.batch
features_1D(data[:24], n_rows=6, subplot_samples=True, tight=True)
#%%# Train ####################################################################
tg.train()
#%%# Visualize LSTM weights post-training #####################################
rnn_heatmap(tg.model, 1)  # 1 == layer index
rnn_histogram(tg.model, 1)
Ejemplo n.º 6
0
def viz_outs(model, idx=1):
    x, y, _ = make_data(K.int_shape(model.input), model.layers[2].units)
    outs = get_outputs(model, idx, x)

    features_1D(outs[:1], n_rows=8, show_borders=False)
    features_2D(outs, n_rows=8, norm=(-1, 1))