Ejemplo n.º 1
0
 def compute_neighbours_and_distancesq(self, coordinates, row_splits):
     idx, dist = SelectKnn(self.n_neighbours,
                           coordinates,
                           row_splits,
                           max_radius=-1.0,
                           tf_compatible=False)
     return idx, dist
Ejemplo n.º 2
0
def selectNeighbours_CUDA(K, coords, row_splits, return_distances=False):
    with tf.GradientTape(persistent=True,
                         watch_accessed_variables=True) as t_newop:
        t_newop.watch(coords)
        out = SelectKnn(K=K,
                        coords=coords,
                        row_splits=row_splits,
                        max_radius=-1.,
                        tf_compatible=True)
    return out, t_newop
def applyClustering(K, incoords, hier, row_splits):

    neighs, _ = SelectKnn(K=K,
                          coords=incoords,
                          row_splits=row_splits,
                          tf_compatible=False,
                          max_radius=radius)

    sel, rs, gscatidx = LocalClustering()([neighs, hier, row_splits])

    return rs, sel, gscatidx
Ejemplo n.º 4
0
 def compute_neighbours_and_distancesq(self, coordinates, row_splits,
                                       masking_values):
     idx, dist = SelectKnn(self.n_neighbours,
                           coordinates,
                           row_splits,
                           max_radius=1.0,
                           tf_compatible=False,
                           masking_values=masking_values,
                           threshold=self.threshold,
                           mask_mode=self.direction,
                           mask_logic=self.ex_mode)
     return idx, dist
Ejemplo n.º 5
0
def applyClustering(K, incoords, hier, row_splits):

    hierarchy_idxs = []
    for i in range(len(row_splits.numpy()) - 1):
        a = tf.argsort(hier[row_splits[i]:row_splits[i + 1]], axis=0)
        hierarchy_idxs.append(a + row_splits[i])
    hierarchy_idxs = tf.concat(hierarchy_idxs, axis=0)
    print('hierarchy_idxs', hierarchy_idxs.shape)
    print('incoords', incoords.shape)
    assert incoords.shape[0] == hierarchy_idxs.shape[0]
    neighs, _ = SelectKnn(K=K,
                          coords=incoords,
                          row_splits=row_splits,
                          tf_compatible=False,
                          max_radius=radius)
    rs, sel, gscatidx = lc(neighs, hierarchy_idxs, row_splits)

    return rs, sel, gscatidx
Ejemplo n.º 6
0
    def compute_neighbours_and_distancesq(self, coordinates, row_splits):

        ragged_split_added_indices, _ = SelectKnn(self.n_neighbours,
                                                  coordinates,
                                                  row_splits,
                                                  max_radius=1.0,
                                                  tf_compatible=True)

        #ragged_split_added_indices = ragged_split_added_indices[:,1:]

        ragged_split_added_indices = ragged_split_added_indices[...,
                                                                tf.newaxis]

        distancesq = tf.reduce_sum(
            (coordinates[:, tf.newaxis, :] -
             tf.gather_nd(coordinates, ragged_split_added_indices))**2,
            axis=-1)  # [SV, N]

        return ragged_split_added_indices, distancesq
radius = 0.05


def getHierIdx(hier, row_splits):
    hierarchy_idxs = []
    for i in range(len(row_splits.numpy()) - 1):
        a = tf.argsort(hier[row_splits[i]:row_splits[i + 1]], axis=0)
        hierarchy_idxs.append(a + row_splits[i])
    return tf.concat(hierarchy_idxs, axis=0)


for v in [10000, 50000, 100000, 400000]:
    row_splits, hier, coords, truth, glidxs = createData(v)
    neighs, _ = SelectKnn(K=K,
                          coords=coords,
                          row_splits=row_splits,
                          tf_compatible=False,
                          max_radius=radius)

    #warmup
    hierarchy_idxs = getHierIdx(hier, row_splits)
    start = time.time()
    hierarchy_idxs = getHierIdx(hier, row_splits)
    sortt.append(time.time() - start)
    #warm up
    rs, sel, gscatidx = lc(neighs, hierarchy_idxs, row_splits)

    start = time.time()
    for _ in range(10):
        rs, sel, gscatidx = lc(neighs, hierarchy_idxs, row_splits)
    totime = (time.time() - start) / 10.
Ejemplo n.º 8
0
    if return_distances:
        return (idcs, distances), t_newop
    return tf.concat(out_indices, axis=0), t_newop


#visual inspection
coords, row_splits = createData(20, 2)

masking_values = tf.random.uniform((20, 1), dtype='float32', seed=1)

idx, dist = SelectKnn(K=5,
                      coords=coords,
                      row_splits=row_splits,
                      max_radius=-.3,
                      tf_compatible=False,
                      masking_values=masking_values,
                      threshold=0.5,
                      mask_mode='scat',
                      mask_logic='and')

print('masking_values', masking_values)
print('idx', idx)
print('dist', dist)

exit()
reldiff = []
for it in range(1):
    coords, row_splits = createData(4000, 4)
    K = 200
Ejemplo n.º 9
0
from neighbour_covariance_op import NeighbourCovariance

import numpy as np
import tensorflow as tf
from select_knn_op import SelectKnn
import time

n_vert = 300000
n_coords = 3
n_feats = 2
n_neigh = 64

coords = tf.random.uniform((n_vert, n_coords), dtype='float32', seed=2)
feats = tf.random.uniform((n_vert, n_feats), dtype='float32', seed=2)
row_splits = tf.constant([0, n_vert], dtype='int32')

nidx, _ = SelectKnn(n_neigh, coords, row_splits)

print('launching op')
cov, means = NeighbourCovariance(coords, feats, nidx)

t0 = time.time()
for _ in range(20):
    cov, means = NeighbourCovariance(coords, feats, nidx)

print((time.time() - t0) / 20)
print(cov.shape, cov)
print(means.shape)
Ejemplo n.º 10
0
    def benchmark(self,
                  nvert=30000,
                  nfeat=64,
                  nneigh=128,
                  ncoords=4,
                  dogradient=False,
                  do_tf=True):

        coords = tf.constant(np.random.rand(nvert, ncoords), dtype='float32')
        feats = tf.constant(np.random.rand(nvert, nfeat), dtype='float32')
        row_splits = tf.constant([0, nvert], dtype='int32')

        indices, distances = SelectKnn(K=nneigh,
                                       coords=coords,
                                       row_splits=row_splits)
        if self.use_distances_direct:
            coords = distances
        tf_failed = False
        if not dogradient:
            #each gets one dry run to compile
            meanmax = self.customimpl(coords,
                                      features=feats,
                                      indices=indices,
                                      mean_and_max=self.mean_and_max)
            t0 = time.time()
            for i in range(0, 50):
                meanmax = self.customimpl(coords,
                                          features=feats,
                                          indices=indices,
                                          mean_and_max=self.mean_and_max)

            op_time = (time.time() - t0) / 50.
            print('op_time', op_time)

            tf_time = 0
            if do_tf:

                try:
                    meanmax = self.tfimp(coords,
                                         features=feats,
                                         indices=indices,
                                         mean_and_max=self.mean_and_max)
                    t0 = time.time()
                    for i in range(0, 50):
                        meanmax = self.tfimp(coords,
                                             features=feats,
                                             indices=indices,
                                             mean_and_max=self.mean_and_max)
                    tf_time = (time.time() - t0) / 50.
                except:
                    tf_failed = True

                print('tf_time', tf_time)

            return op_time, tf_time

        else:
            with tf.GradientTape(persistent=True,
                                 watch_accessed_variables=True) as t_newop:
                t_newop.watch(coords)
                t_newop.watch(feats)
                meanmax = self.customimpl(coords,
                                          features=feats,
                                          indices=indices,
                                          mean_and_max=self.mean_and_max)

            #once to get it compiled in case needed
            feat_grad = t_newop.gradient(meanmax, feats)
            coord_grad = t_newop.gradient(meanmax, coords)

            t0 = time.time()
            for i in range(5):
                feat_grad = t_newop.gradient(meanmax, feats)
                coord_grad = t_newop.gradient(meanmax, coords)
            op_time = (time.time() - t0) / 5.

            tf_time = 0

            if do_tf:
                try:
                    with tf.GradientTape(persistent=True) as t_tfop:
                        t_tfop.watch(coords)
                        t_tfop.watch(feats)
                        meanmax = self.tfimp(coords,
                                             features=feats,
                                             indices=indices,
                                             mean_and_max=self.mean_and_max)

                    feat_grad = t_tfop.gradient(meanmax, feats)
                    coord_grad = t_tfop.gradient(meanmax, coords)
                    t0 = time.time()
                    for i in range(5):
                        feat_grad = t_tfop.gradient(meanmax, feats)
                        coord_grad = t_tfop.gradient(meanmax, coords)
                    tf_time = (time.time() - t0) / 5.
                except:
                    tf_failed = True
            return op_time, tf_time
Ejemplo n.º 11
0
    def difference(self,
                   nvert=300,
                   nfeat=64,
                   nneigh=32,
                   ncoords=4,
                   onlyForward=False,
                   assert_error=True):

        coords = tf.constant(np.random.rand(nvert, ncoords), dtype='float32')
        feats = np.random.rand(nvert, nfeat)
        #to make the max unambiguous
        frange = np.arange(nvert)
        np.random.shuffle(frange)
        toadd = np.expand_dims(frange, axis=1)
        feats = tf.constant(feats + toadd, dtype='float32')

        row_splits = tf.constant([0, nvert], dtype='int32')
        #print('building indices')
        with tf.device("/cpu:0"):
            indices, distances = SelectKnn(K=nneigh,
                                           coords=coords,
                                           row_splits=row_splits)
            #indices = indices[:,1:]
            #distances = distances[:,1:]
        #print('process custom op')
        if self.use_distances_direct:
            coords = distances
        op_time = 0

        tfdevstring = "/gpu:0"
        if self.customoncpu:
            tfdevstring = "/cpu:0"
        tfdev = tf.device(tfdevstring)
        t0 = time.time()
        with tfdev:
            t0 = time.time()
            with tf.GradientTape(persistent=True,
                                 watch_accessed_variables=True) as t_newop:
                t_newop.watch(coords)
                t_newop.watch(feats)
                meanmax = self.customimpl(coords,
                                          features=feats,
                                          indices=indices,
                                          mean_and_max=self.mean_and_max)
                t1 = time.time()
                op_time = t1 - t0

        #print('op time',op_time)
        with tfdev:
            coord_grad = t_newop.gradient(meanmax, coords)
            feat_grad = t_newop.gradient(meanmax, feats)

        if self.debugout:
            print('coords', coords, '\n')
            print('feats', feats, '\n')
            print('custom output', meanmax, '\n')
            print('indices', indices)

            ### tf op implementation
            print('TFTFTF')

        tf_feat_grad = None
        tf_coord_grad = None
        #print('process TF op')
        tfdevstring = "/gpu:0"
        if self.tfoncpu:
            tfdevstring = "/cpu:0"
        tfdev = tf.device(tfdevstring)
        t0 = time.time()
        with tfdev:
            with tf.GradientTape(persistent=True) as t_tfop:
                t_tfop.watch(coords)
                t_tfop.watch(feats)
                tf_meanmax = self.tfimp(coords,
                                        features=feats,
                                        indices=indices,
                                        mean_and_max=self.mean_and_max)

        tf_time = time.time() - t0

        if self.debugout:
            print('TF output', tf_meanmax, '\n')

        with tfdev:
            tf_feat_grad = t_tfop.gradient(tf_meanmax, feats)
            tf_coord_grad = t_tfop.gradient(tf_meanmax, coords)

        with tf.device("/cpu:0"):
            difference = meanmax - tf_meanmax
            max_rel_difference = tf.reduce_max(
                tf.abs(difference / (tf.abs(tf_meanmax) + 1e-3))).numpy()
            max_difference = tf.reduce_max(tf.abs(difference)).numpy()

            #print('max rel difference',max_rel_difference)
            #print('max difference',max_difference)
            #print('op time',op_time)
            #print('tf time',tf_time)
            if assert_error:
                assert max_difference < 1e-2

            if onlyForward:
                return

            ## gradients
            #print('tf_feat_grad',tf_feat_grad)
            #print('tf_coord_grad',tf_coord_grad)

            #print('feat_grad',feat_grad)
            #print('coord_grad',coord_grad)

            feat_grad_diff = feat_grad - tf_feat_grad
            coord_grad_diff = coord_grad - tf_coord_grad

            #print('feat_grad_diff',feat_grad_diff)
            #print('coord_grad_diff',coord_grad_diff)

            #print('relative feat_grad_diff',feat_grad_diff/tf_feat_grad)
            #print('relative coord_grad_diff',coord_grad_diff/tf_coord_grad)

            maxfeatgraddiff = tf.reduce_max(tf.abs(feat_grad_diff))
            maxcoordgraddiff = tf.reduce_max(tf.abs(coord_grad_diff))

            rel_feat_grad_diff = (feat_grad_diff) / (tf.abs(tf_feat_grad) +
                                                     1e-2)
            rel_coord_grad_diff = coord_grad_diff / (tf.abs(tf_coord_grad) +
                                                     1e-2)

            maxrelfeatgraddiff = tf.reduce_max(tf.abs(rel_feat_grad_diff))
            maxrelcoordgraddiff = tf.reduce_max(tf.abs(rel_coord_grad_diff))

            #print('\nmax relative feature grad diff', maxrelfeatgraddiff)
            #print('max relative coordinate grad diff', maxrelcoordgraddiff)

            def check_indices():
                idx_ok = True
                for i in tf.range(indices.shape[0]):
                    y, idx, c = tf.unique_with_counts(indices[i])
                    if (c.numpy() > 1).any() or (indices[i].numpy() >=
                                                 indices.shape[0]).any():
                        idx_ok = False
                        print("indices not unique", indices[i])
                if idx_ok:
                    print('indices ok')

            if self.debugout:
                print('custom feature grad ', feat_grad)
                print('TF feature grad', tf_feat_grad)
                print('difference', feat_grad_diff)

                print('custom coord grad', coord_grad)
                print('TF coord grad', tf_coord_grad)
                print('Difference', coord_grad_diff)

            if maxrelfeatgraddiff > 1e-2:
                print('Feature gradient off:')
                print('max rel diff', maxrelfeatgraddiff)
                print('max diff', maxfeatgraddiff)
                print('min,max feat', tf.reduce_min(feats),
                      tf.reduce_max(feats))
                print('min,max coords', tf.reduce_min(coords),
                      tf.reduce_max(coords))
                check_indices()

            if maxrelcoordgraddiff > 1e-2:
                print('Coordinate gradient off:')
                print('max rel diff', maxrelcoordgraddiff)
                print('max diff', maxcoordgraddiff)
                print('min,max feat', tf.reduce_min(feats),
                      tf.reduce_max(feats))
                print('min,max coords', tf.reduce_min(coords),
                      tf.reduce_max(coords))
                check_indices()

            if maxfeatgraddiff > 1e-2:
                print('Feature gradient off:')
                print('max rel diff', maxrelfeatgraddiff)
                print('max diff', maxfeatgraddiff)
                print('min,max feat', tf.reduce_min(feats),
                      tf.reduce_max(feats))
                print('min,max coords', tf.reduce_min(coords),
                      tf.reduce_max(coords))
                check_indices()

            if maxcoordgraddiff > 1e-2:
                print('Coordinate gradient off:')
                print('max rel diff', maxrelcoordgraddiff)
                print('max diff', maxcoordgraddiff)
                print('min,max feat', tf.reduce_min(feats),
                      tf.reduce_max(feats))
                print('min,max coords', tf.reduce_min(coords),
                      tf.reduce_max(coords))
                check_indices()

            if assert_error:
                assert maxrelfeatgraddiff < 5e-2
                assert maxrelcoordgraddiff < 5e-2

            reldifference = tf.reshape(
                difference / (tf.abs(tf_meanmax) + 1e-4), [-1])
            difference = tf.reshape(difference, [-1])
            rel_feat_grad_diff = tf.reshape(rel_feat_grad_diff, [-1])
            rel_coord_grad_diff = tf.reshape(rel_coord_grad_diff, [-1])
            feat_grad_diff = tf.reshape(feat_grad_diff, [-1])
            coord_grad_diff = tf.reshape(coord_grad_diff, [-1])

            return difference, reldifference, rel_feat_grad_diff, rel_coord_grad_diff, feat_grad_diff, coord_grad_diff
Ejemplo n.º 12
0
def createData(n_vert, n_coords):

    coords = tf.random.uniform((n_vert, n_coords), dtype='float32', seed=2)
    row_splits = tf.constant([0, n_vert], dtype='int32')

    return coords, row_splits  #row splits just for other ops, no need to test


n_neigh = 5
max_radius = -1

coords, row_splits = createData(10, 3)
neigh, dst = SelectKnn(n_neigh,
                       coords,
                       row_splits,
                       max_radius=max_radius,
                       tf_compatible=True)
dst = None
dst2 = None
with tf.GradientTape(persistent=True,
                     watch_accessed_variables=True) as t_newop:
    t_newop.watch(coords)
    dst2 = LocalDistance(coords, neigh)
    coord_grad = t_newop.gradient(dst2, coords)

with tf.GradientTape(persistent=True,
                     watch_accessed_variables=True) as t_compareop:
    t_compareop.watch(coords)
    _, dst = SelectKnn(n_neigh,
                       coords,
Ejemplo n.º 13
0
    def call(self, inputs):
        x = inputs[0]
        row_splits = inputs[1]
        thresh_values = inputs[2]

        coordinates = self.input_spatial_transform(x)

        up_neighbour_indices, up_distancesq = SelectKnn(
            self.n_neighbours,
            coordinates,
            row_splits,
            max_radius=self.max_radius,
            masking_values=thresh_values,
            tf_compatible=False,
            threshold=self.threshold,
            mask_mode='acc',
            mask_logic='xor')

        down_neighbour_indices, down_distancesq = SelectKnn(
            self.n_neighbours,
            coordinates,
            row_splits,
            max_radius=self.max_radius,
            masking_values=thresh_values,
            tf_compatible=False,
            threshold=self.threshold,
            mask_mode='scat',
            mask_logic='xor')

        allfeat = []
        tfet = []
        features = x

        #tf.print(down_neighbour_indices)

        for i in range(len(self.input_feature_transform)):
            t = self.input_feature_transform[i]

            neighbour_indices = up_neighbour_indices
            distancesq = up_distancesq
            if i % 2:
                neighbour_indices = down_neighbour_indices
                distancesq = down_distancesq

            features = t(features)
            orig_tf = features
            prev_shape = features.shape
            features = self.collect_neighbours(features, neighbour_indices,
                                               distancesq)
            features = tf.reshape(features, [-1, prev_shape[1] * 2])

            #tf.print(i, tf.concat([thresh_values,features,orig_tf],axis=-1), summarize=10)

            allfeat.append(features)
            if self.parse_lin and i > 0:
                up_distancesq *= 0.  #the remaining parsing operations will be at zero distance
                down_distancesq *= 0.
        #tf.print(thresh_values.shape, allfeat[0].shape)
        #tf.print(tf.concat([thresh_values]+allfeat+tfet,axis=-1), summarize=120)
        features = tf.concat(allfeat + [x], axis=-1)

        return self.output_feature_transform(features), coordinates