def meta_algorithm(X, XTXi, resid, sampler):

        S = sampler(scale=0.)  # deterministic with scale=0
        ynew = X.dot(XTXi).dot(S) + resid  # will be ok for n>p and non-degen X
        G = lasso_glmnet(X, ynew, *[None] * 4)
        select = G.select()
        return set(list(select[0]))
Ejemplo n.º 2
0
    def meta_algorithm(X, XTXi, resid, sampler):

        S = sampler.center.copy()
        ynew = X.dot(XTXi).dot(S) + resid  # will be ok for n>p and non-degen X
        G = lasso_glmnet(X, ynew, *[None] * 4)
        select = G.select(seed=seed)
        return set(list(select[0]))
Ejemplo n.º 3
0
    def meta_algorithm(X, XTXi, resid, sampler):

        n, p = X.shape
        idx = np.random.choice(np.arange(n), 200, replace=False)

        S = sampler(scale=0.)  # deterministic with scale=0
        ynew = X.dot(XTXi).dot(S) + resid  # will be ok for n>p and non-degen X

        G = lasso_glmnet(X[idx], ynew[idx], *[None] * 4)
        select = G.select()
        return set(list(select[0]))
Ejemplo n.º 4
0
    def meta_algorithm(X, XTXi, resid, sampler):

        n, p = X.shape

        S = sampler(scale=0.5)  # deterministic with scale=0
        ynew = X.dot(XTXi).dot(S) + resid  # will be ok for n>p and non-degen X

        Xstack = np.hstack([X, np.random.standard_normal((n, k))])

        G = lasso_glmnet(Xstack, ynew, *[None] * 4)
        select = G.select(seed=seed)
        return set(list(select[0])).intersection(range(p))