Ejemplo n.º 1
0
def test_vgg_variant():
    x = torch.randn(16, 3, 32, 32).cuda()

    model = vgg11_variant(32, 0.3).cuda()
    out = model(x)
    assert out.size(0) == 16
    assert out.size(1) == 512
    print(out.shape)

    model = vgg13_variant(32, 0.3).cuda()
    out = model(x)
    assert out.size(0) == 16
    assert out.size(1) == 512
    print(out.shape)

    model = vgg16_variant(32, 0.3).cuda()
    out = model(x)
    assert out.size(0) == 16
    assert out.size(1) == 512
    print(out.shape)

    model = vgg19_variant(32, 0.3).cuda()
    out = model(x)
    assert out.size(0) == 16
    assert out.size(1) == 512
    print(out.shape)
Ejemplo n.º 2
0
def test_model():
    x = torch.randn(16, 3, 32, 32).cuda()

    features = vgg11_variant(32, 0.3).cuda()
    model = SelectiveNet(features, 512, 10).cuda()
    out_class, out_select, out_aux = model(x)
    assert out_class.size(0) == 16
    assert out_class.size(1) == 10
    assert out_select.size(0) == 16
    assert out_select.size(1) == 1
    assert out_aux.size(0) == 16
    assert out_aux.size(1) == 10
    print('out_class', out_class.shape)
    print('out_select', out_select.shape)
    print('out_aux', out_aux.shape)

    features = vgg13_variant(32, 0.3).cuda()
    model = SelectiveNet(features, 512, 10).cuda()
    out_class, out_select, out_aux = model(x)
    assert out_class.size(0) == 16
    assert out_class.size(1) == 10
    assert out_select.size(0) == 16
    assert out_select.size(1) == 1
    assert out_aux.size(0) == 16
    assert out_aux.size(1) == 10
    print('out_class', out_class.shape)
    print('out_select', out_select.shape)
    print('out_aux', out_aux.shape)

    features = vgg16_variant(32, 0.3).cuda()
    model = SelectiveNet(features, 512, 10).cuda()
    out_class, out_select, out_aux = model(x)
    assert out_class.size(0) == 16
    assert out_class.size(1) == 10
    assert out_select.size(0) == 16
    assert out_select.size(1) == 1
    assert out_aux.size(0) == 16
    assert out_aux.size(1) == 10
    print('out_class', out_class.shape)
    print('out_select', out_select.shape)
    print('out_aux', out_aux.shape)

    features = vgg19_variant(32, 0.3).cuda()
    model = SelectiveNet(features, 512, 10).cuda()
    out_class, out_select, out_aux = model(x)
    assert out_class.size(0) == 16
    assert out_class.size(1) == 10
    assert out_select.size(0) == 16
    assert out_select.size(1) == 1
    assert out_aux.size(0) == 16
    assert out_aux.size(1) == 10
    print('out_class', out_class.shape)
    print('out_select', out_select.shape)
    print('out_aux', out_aux.shape)
Ejemplo n.º 3
0
def test_selective_loss():
    x = torch.randn(16, 3, 32, 32).cuda()
    features = vgg16_variant(32, 0.3).cuda()
    model = SelectiveNet(features, 512, 10).cuda()
    out_class, out_select, _ = model(x)
    target = torch.randint(0, 9, (16, )).cuda()

    loss_func = torch.nn.CrossEntropyLoss(reduction='none')
    loss, loss_dict = SelectiveLoss(loss_func,
                                    coverage=0.7)(out_class, out_select,
                                                  target)
    assert loss.size(0) == 1
    print('loss', loss)
    print(loss_dict)
Ejemplo n.º 4
0
        
        prediction_out = self.classifier(x)
        selection_out  = self.selector(x)
        auxiliary_out  = self.aux_classifier(x)

        return prediction_out, selection_out, auxiliary_out

    def _initialize_weights(self, module):
        for m in module.modules():
            if isinstance(m, torch.nn.Conv2d):
                torch.nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    torch.nn.init.constant_(m.bias, 0)
            elif isinstance(m, torch.nn.BatchNorm1d):
                torch.nn.init.constant_(m.weight, 1)
                torch.nn.init.constant_(m.bias, 0)
            elif isinstance(m, torch.nn.Linear):
                torch.nn.init.normal_(m.weight, 0, 0.01)
                torch.nn.init.constant_(m.bias, 0)

if __name__ == '__main__':
    import os
    import sys

    base = os.path.join(os.path.dirname(os.path.abspath(__file__)), '../')
    sys.path.append(base)

    from selectivenet.vgg_variant import vgg16_variant

    features = vgg16_variant(32,0.3).cuda()
    model = SelectiveNet(features,512,10).cuda()
Ejemplo n.º 5
0
    from selectivenet.loss import SelectiveLoss
    from selectivenet.data import DatasetBuilder
    from external.dada.io import load_model

    # dataset
    dataset_builder = DatasetBuilder(name='cifar10',
                                     root_path='../../../../data')
    test_dataset = dataset_builder(train=False, normalize=True)
    test_loader = torch.utils.data.DataLoader(test_dataset,
                                              batch_size=8,
                                              shuffle=False,
                                              num_workers=16,
                                              pin_memory=True)

    # model
    features = vgg16_variant(dataset_builder.input_size, 0.3).cuda()
    model = SelectiveNet(features, 512, dataset_builder.num_classes).cuda()

    weight_path = '../../../../logs/abci/cifar10_ex01/0f7d6935b74b42c0a705dd241635d76b/weight_final_coverage_0.70.pth'
    load_model(model, weight_path)
    if torch.cuda.device_count() > 1: model = torch.nn.DataParallel(model)

    # attacker
    attacker = PGDAttackVariant(10,
                                32,
                                30,
                                'cifar10',
                                coverage=0.7,
                                trg_loss='both')

    # test
Ejemplo n.º 6
0
def train(**kwargs):
    FLAGS = FlagHolder()
    FLAGS.initialize(**kwargs)
    FLAGS.summary()
    FLAGS.dump(
        path=os.path.join(FLAGS.log_dir, 'flags{}.json'.format(FLAGS.suffix)))

    # dataset
    dataset_builder = DatasetBuilder(name=FLAGS.dataset,
                                     root_path=FLAGS.dataroot)
    train_dataset = dataset_builder(train=True, normalize=FLAGS.normalize)
    val_dataset = dataset_builder(train=False, normalize=FLAGS.normalize)
    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=FLAGS.batch_size,
                                               shuffle=True,
                                               num_workers=FLAGS.num_workers,
                                               pin_memory=True)
    val_loader = torch.utils.data.DataLoader(val_dataset,
                                             batch_size=FLAGS.batch_size,
                                             shuffle=False,
                                             num_workers=FLAGS.num_workers,
                                             pin_memory=True)

    # model
    features = vgg16_variant(dataset_builder.input_size,
                             FLAGS.dropout_prob).cuda()
    model = SelectiveNet(features, FLAGS.dim_features,
                         dataset_builder.num_classes).cuda()
    if torch.cuda.device_count() > 1: model = torch.nn.DataParallel(model)

    # optimizer
    params = model.parameters()
    optimizer = torch.optim.SGD(params,
                                lr=FLAGS.lr,
                                momentum=FLAGS.momentum,
                                weight_decay=FLAGS.wd)
    scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
                                                step_size=25,
                                                gamma=0.5)

    # loss
    base_loss = torch.nn.CrossEntropyLoss(reduction='none')
    SelectiveCELoss = SelectiveLoss(base_loss, coverage=FLAGS.coverage)

    # logger
    train_logger = Logger(path=os.path.join(
        FLAGS.log_dir, 'train_log{}.csv'.format(FLAGS.suffix)),
                          mode='train')
    val_logger = Logger(path=os.path.join(
        FLAGS.log_dir, 'val_log{}.csv'.format(FLAGS.suffix)),
                        mode='val')

    for ep in range(FLAGS.num_epochs):
        # pre epoch
        train_metric_dict = MetricDict()
        val_metric_dict = MetricDict()

        # train
        for i, (x, t) in enumerate(train_loader):
            model.train()
            x = x.to('cuda', non_blocking=True)
            t = t.to('cuda', non_blocking=True)

            # forward
            out_class, out_select, out_aux = model(x)

            # compute selective loss
            loss_dict = OrderedDict()
            # loss dict includes, 'empirical_risk' / 'emprical_coverage' / 'penulty'
            selective_loss, loss_dict = SelectiveCELoss(
                out_class, out_select, t)
            selective_loss *= FLAGS.alpha
            loss_dict['selective_loss'] = selective_loss.detach().cpu().item()
            # compute standard cross entropy loss
            ce_loss = torch.nn.CrossEntropyLoss()(out_aux, t)
            ce_loss *= (1.0 - FLAGS.alpha)
            loss_dict['ce_loss'] = ce_loss.detach().cpu().item()

            # total loss
            loss = selective_loss + ce_loss
            loss_dict['loss'] = loss.detach().cpu().item()

            # backward
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            train_metric_dict.update(loss_dict)

        # validation
        with torch.autograd.no_grad():
            for i, (x, t) in enumerate(val_loader):
                model.eval()
                x = x.to('cuda', non_blocking=True)
                t = t.to('cuda', non_blocking=True)

                # forward
                out_class, out_select, out_aux = model(x)

                # compute selective loss
                loss_dict = OrderedDict()
                # loss dict includes, 'empirical_risk' / 'emprical_coverage' / 'penulty'
                selective_loss, loss_dict = SelectiveCELoss(
                    out_class, out_select, t)
                selective_loss *= FLAGS.alpha
                loss_dict['selective_loss'] = selective_loss.detach().cpu(
                ).item()
                # compute standard cross entropy loss
                ce_loss = torch.nn.CrossEntropyLoss()(out_aux, t)
                ce_loss *= (1.0 - FLAGS.alpha)
                loss_dict['ce_loss'] = ce_loss.detach().cpu().item()

                # total loss
                loss = selective_loss + ce_loss
                loss_dict['loss'] = loss.detach().cpu().item()

                # evaluation
                evaluator = Evaluator(out_class.detach(), t.detach(),
                                      out_select.detach())
                loss_dict.update(evaluator())

                val_metric_dict.update(loss_dict)

        # post epoch
        # print_metric_dict(ep, FLAGS.num_epochs, train_metric_dict.avg, mode='train')
        print_metric_dict(ep,
                          FLAGS.num_epochs,
                          val_metric_dict.avg,
                          mode='val')

        train_logger.log(train_metric_dict.avg, step=(ep + 1))
        val_logger.log(val_metric_dict.avg, step=(ep + 1))

        scheduler.step()

    # post training
    save_model(model,
               path=os.path.join(FLAGS.log_dir,
                                 'weight_final{}.pth'.format(FLAGS.suffix)))
Ejemplo n.º 7
0
def test(**kwargs):
    FLAGS = FlagHolder()
    FLAGS.initialize(**kwargs)
    FLAGS.summary()

    # dataset
    dataset_builder = DatasetBuilder(name=FLAGS.dataset,
                                     root_path=FLAGS.dataroot)
    test_dataset = dataset_builder(train=False, normalize=FLAGS.normalize)
    test_loader = torch.utils.data.DataLoader(test_dataset,
                                              batch_size=FLAGS.batch_size,
                                              shuffle=False,
                                              num_workers=FLAGS.num_workers,
                                              pin_memory=True)

    # model
    features = vgg16_variant(dataset_builder.input_size,
                             FLAGS.dropout_prob).cuda()
    model = SelectiveNet(features, FLAGS.dim_features,
                         dataset_builder.num_classes).cuda()
    load_model(model, FLAGS.weight)

    if torch.cuda.device_count() > 1: model = torch.nn.DataParallel(model)

    # loss
    base_loss = torch.nn.CrossEntropyLoss(reduction='none')
    SelectiveCELoss = SelectiveLoss(base_loss, coverage=FLAGS.coverage)

    # pre epoch
    test_metric_dict = MetricDict()

    # test
    with torch.autograd.no_grad():
        for i, (x, t) in enumerate(test_loader):
            model.eval()
            x = x.to('cuda', non_blocking=True)
            t = t.to('cuda', non_blocking=True)

            # forward
            out_class, out_select, out_aux = model(x)

            # compute selective loss
            loss_dict = OrderedDict()
            # loss dict includes, 'empirical_risk' / 'emprical_coverage' / 'penulty'
            selective_loss, loss_dict = SelectiveCELoss(
                out_class, out_select, t)
            selective_loss *= FLAGS.alpha
            loss_dict['selective_loss'] = selective_loss.detach().cpu().item()
            # compute standard cross entropy loss
            ce_loss = torch.nn.CrossEntropyLoss()(out_aux, t)
            ce_loss *= (1.0 - FLAGS.alpha)
            loss_dict['ce_loss'] = ce_loss.detach().cpu().item()
            # total loss
            loss = selective_loss + ce_loss
            loss_dict['loss'] = loss.detach().cpu().item()

            # evaluation
            evaluator = Evaluator(out_class.detach(), t.detach(),
                                  out_select.detach())
            loss_dict.update(evaluator())

            test_metric_dict.update(loss_dict)

    # post epoch
    print_metric_dict(None, None, test_metric_dict.avg, mode='test')

    return test_metric_dict.avg