def run(self): # using gradDescent to get the optimal parameter beta = [w, b] in page-59 beta = self_def.gradDscent_2(self.X_train, self.y_train) # prediction, beta mapping to the model y_pred = self_def.predict(self.X_test, beta) m_test = np.shape(self.X_test)[0] # calculation of confusion_matrix and prediction accuracy cfmat = np.zeros((2, 2)) for i in range(m_test): if y_pred[i] == self.y_test[i] == 0: cfmat[0, 0] += 1 elif y_pred[i] == self.y_test[i] == 1: cfmat[1, 1] += 1 elif y_pred[i] == 0: cfmat[1, 0] += 1 elif y_pred[i] == 1: cfmat[0, 1] += 1 print(cfmat) pass
from sklearn import model_selection import self_def # X_train, X_test, y_train, y_test np.ones(n) m, n = np.shape(X) X_ex = np.c_[X, np.ones(m)] # extend the variable matrix to [x, 1] #print (X_ex) X_train, X_test, y_train, y_test = model_selection.train_test_split(X_ex, y, test_size=0.5, random_state=0) # using gradDescent to get the optimal parameter beta = [w, b] in page-59 beta = self_def.gradDscent_1(X_train, y_train) # prediction, beta mapping to the model y_pred = self_def.predict(X_test, beta) m_test = np.shape(X_test)[0] # calculation of confusion_matrix and prediction accuracy cfmat = np.zeros((2, 2)) for i in range(m_test): if y_pred[i] == y_test[i] == 0: cfmat[0, 0] += 1 elif y_pred[i] == y_test[i] == 1: cfmat[1, 1] += 1 elif y_pred[i] == 0: cfmat[1, 0] += 1 elif y_pred[i] == 1: cfmat[0, 1] += 1 print(cfmat)
from sklearn import model_selection import self_def # X_train, X_test, y_train, y_test np.ones(n) m,n = np.shape(X) X_ex = np.c_[X, np.ones(m)] # extend the variable matrix to [x, 1] X_train, X_test, y_train, y_test = model_selection.train_test_split(X_ex, y, test_size=0.5, random_state=0) # using gradDescent to get the optimal parameter beta = [w, b] in page-59 beta = self_def.gradDscent_2(X_train, y_train) # prediction, beta mapping to the model y_pred = self_def.predict(X_test, beta) m_test = np.shape(X_test)[0] # calculation of confusion_matrix and prediction accuracy cfmat = np.zeros((2,2)) for i in range(m_test): if y_pred[i] == y_test[i] == 0: cfmat[0,0] += 1 elif y_pred[i] == y_test[i] == 1: cfmat[1,1] += 1 elif y_pred[i] == 0: cfmat[1,0] += 1 elif y_pred[i] == 1: cfmat[0,1] += 1 print(cfmat)