Ejemplo n.º 1
0
def plot_sensor_map(sensor_id_list):

    sensor_dict = define_sensors(sensor_id_list)

    plt.figure()
    m = Basemap(projection='cyl',
                llcrnrlat=-90,
                urcrnrlat=90,
                llcrnrlon=-180,
                urcrnrlon=180,
                resolution='c')
    m.drawcoastlines()

    for sensor_id in sensor_dict:
        latlonht = sensor_dict[sensor_id]['geodetic_latlonht']

        plt.plot(latlonht[1], latlonht[0], 'bo', ms=8)

    return
Ejemplo n.º 2
0
def twobody_geo_setup():

    arcsec2rad = pi / (3600. * 180.)

    # Retrieve latest EOP data from celestrak.com
    eop_alldata = get_celestrak_eop_alldata()

    # Retrieve polar motion data from file
    XYs_df = get_XYs2006_alldata()

    # Define state parameters
    state_params = {}
    state_params['GM'] = GME
    state_params['radius_m'] = 1.
    state_params['albedo'] = 0.1

    # Integration function and additional settings
    int_params = {}
    int_params['integrator'] = 'ode'
    int_params['ode_integrator'] = 'dop853'
    int_params['intfcn'] = ode_twobody
    int_params['rtol'] = 1e-12
    int_params['atol'] = 1e-12
    int_params['time_system'] = 'datetime'

    # Time vector
    tk_list = []
    for hr in range(24):
        UTC = datetime(2021, 6, 21, hr, 0, 0)
        tvec = np.arange(0., 601., 60.)
        tk_list.extend([UTC + timedelta(seconds=ti) for ti in tvec])

    # Inital State
    elem = [42164.1, 0.001, 0., 90., 0., 0.]
    X_true = np.reshape(kep2cart(elem), (6, 1))
    P = np.diag([1., 1., 1., 1e-6, 1e-6, 1e-6])
    pert_vect = np.multiply(np.sqrt(np.diag(P)), np.random.randn(6))
    X_init = X_true + np.reshape(pert_vect, (6, 1))

    state_dict = {}
    state_dict[tk_list[0]] = {}
    state_dict[tk_list[0]]['X'] = X_init
    state_dict[tk_list[0]]['P'] = P

    # Sensor and measurement parameters
    sensor_id_list = ['UNSW Falcon']
    sensor_params = define_sensors(sensor_id_list)
    sensor_params['eop_alldata'] = eop_alldata
    sensor_params['XYs_df'] = XYs_df

    for sensor_id in sensor_id_list:
        sensor_params[sensor_id]['meas_types'] = ['ra', 'dec']
        sigma_dict = {}
        sigma_dict['ra'] = 5. * arcsec2rad  # rad
        sigma_dict['dec'] = 5. * arcsec2rad  # rad
        sensor_params[sensor_id]['sigma_dict'] = sigma_dict
    print(sensor_params)

    # Generate truth and measurements
    truth_dict = {}
    meas_fcn = H_radec
    meas_dict = {}
    meas_dict['tk_list'] = []
    meas_dict['Yk_list'] = []
    meas_dict['sensor_id_list'] = []
    X = X_true.copy()
    for kk in range(len(tk_list)):

        if kk > 0:
            tin = [tk_list[kk - 1], tk_list[kk]]
            tout, Xout = general_dynamics(X, tin, state_params, int_params)
            X = Xout[-1, :].reshape(6, 1)

        truth_dict[tk_list[kk]] = X

        # Check visibility conditions and compute measurements
        UTC = tk_list[kk]
        EOP_data = get_eop_data(eop_alldata, UTC)

        for sensor_id in sensor_id_list:
            sensor = sensor_params[sensor_id]
            if check_visibility(X, state_params, sensor, UTC, EOP_data,
                                XYs_df):

                # Compute measurements
                Yk = compute_measurement(X,
                                         state_params,
                                         sensor,
                                         UTC,
                                         EOP_data,
                                         XYs_df,
                                         meas_types=sensor['meas_types'])

                Yk[0] += np.random.randn() * sigma_dict['ra']
                Yk[1] += np.random.randn() * sigma_dict['dec']

                meas_dict['tk_list'].append(UTC)
                meas_dict['Yk_list'].append(Yk)
                meas_dict['sensor_id_list'].append(sensor_id)

    # Plot data
    tplot = [(tk - tk_list[0]).total_seconds() / 3600. for tk in tk_list]
    xplot = []
    yplot = []
    zplot = []
    for tk in tk_list:
        X = truth_dict[tk]
        xplot.append(X[0])
        yplot.append(X[1])
        zplot.append(X[2])

    meas_tk = meas_dict['tk_list']
    meas_tplot = [(tk - tk_list[0]).total_seconds() / 3600. for tk in meas_tk]
    meas_sensor_id = meas_dict['sensor_id_list']
    meas_sensor_index = [
        sensor_id_list.index(sensor_id) for sensor_id in meas_sensor_id
    ]

    plt.figure()
    plt.subplot(3, 1, 1)
    plt.plot(tplot, xplot, 'k.')
    plt.ylabel('X [km]')
    plt.subplot(3, 1, 2)
    plt.plot(tplot, yplot, 'k.')
    plt.ylabel('Y [km]')
    plt.subplot(3, 1, 3)
    plt.plot(tplot, zplot, 'k.')
    plt.ylabel('Z [km]')
    plt.xlabel('Time [hours]')

    plt.figure()
    plt.plot(meas_tplot, meas_sensor_index, 'k.')
    plt.xlabel('Time [hours]')
    plt.ylabel('Sensor ID')

    plt.show()

    print(meas_dict)

    pklFile = open('twobody_geo_setup.pkl', 'wb')
    pickle.dump([
        state_dict, state_params, int_params, meas_fcn, meas_dict,
        sensor_params, truth_dict
    ], pklFile, -1)
    pklFile.close()

    return
Ejemplo n.º 3
0
    get_tle_UTC = [datetime(2018, 10, 29, 0, 0, 0)]
    tle_dict, tle_df = get_spacetrack_tle_data(obj_id_list, get_tle_UTC)
    print(tle_dict)

    fdir = Path(
        'D:/documents/research/sensor_management/reports/2018_asrc_ROO/data')
    fname = fdir / 'QZSS_OD_angles.csv'

    UTC_list, ra_list, dec_list = read_csv_angles_meas(fname)

    output_state = propagate_TLE(obj_id_list,
                                 UTC_list,
                                 tle_dict,
                                 offline_flag=True)

    sensor_dict = define_sensors(sensor_id_list)
    latlonht = sensor_dict[sensor_id_list[0]]['geodetic_latlonht']
    lat = latlonht[0]
    lon = latlonht[1]
    ht = latlonht[2]
    stat_ecef = latlonht2ecef(lat, lon, ht)
    eop_alldata = get_celestrak_eop_alldata(offline_flag=True)

    ra_geo = []
    dec_geo = []
    ra_topo = []
    dec_topo = []
    for ii in range(len(UTC_list)):

        # Retrieve object position vector
        UTC = UTC_list[ii]
Ejemplo n.º 4
0
def truth_vs_tle():
    
    plt.close('all')
    
    # Setup
    eop_alldata = get_celestrak_eop_alldata()
    
    sensor_dict = define_sensors(['UNSW Falcon'])
    latlonht = sensor_dict['UNSW Falcon']['geodetic_latlonht']
    lat = latlonht[0]
    lon = latlonht[1]
    ht = latlonht[2]
    stat_ecef = latlonht2ecef(lat, lon, ht)
    
    # Object ID
    norad_id = 42917
    sp3_obj_id = 'PJ07'
    
    # Measurement Times
    t0 = datetime(2019, 9, 3, 10, 9, 42)
    tf = datetime(2019, 9, 3, 18, 4, 42)


    # Read SP3 file
    fdir = 'D:\documents\\teaching\\unsw_ssa_undergrad\lab\\telescope\\truth_data'
    fname = 'gbm20692.sp3'
    sp3_fname = os.path.join(fdir, fname)
    
    sp3_dict = read_sp3_file(sp3_fname)
    
    
    gps_time_list = sp3_dict[sp3_obj_id]['datetime']
    sp3_ecef_list = sp3_dict[sp3_obj_id]['r_ecef']
    
    UTC_list = []
    for ii in range(len(gps_time_list)):
        
        gps_time = gps_time_list[ii]
        sp3_ecef = sp3_ecef_list[ii]
        EOP_data = get_eop_data(eop_alldata, gps_time)
        
        # Convert to UTC
        utc_time = gpsdt2utcdt(gps_time, EOP_data['TAI_UTC'])
        UTC_list.append(utc_time) # + timedelta(seconds=ti) for ti in range(0,101,10)]
        
        
    print(UTC_list[0:10])
    print(UTC_list[0])
    
    obj_id_list = [norad_id]
    
    
    tle_dict, tle_df = get_spacetrack_tle_data(obj_id_list, [UTC_list[0]])
    print(tle_dict)
    
    output_state = propagate_TLE(obj_id_list, UTC_list, tle_dict)
    
    
    ric_err = np.zeros((3, len(UTC_list)))
    ti_hrs = []
    truth_out = []
    tle_ric_err = []
    for ii in range(len(UTC_list)):
        UTC = UTC_list[ii]
        EOP_data = get_eop_data(eop_alldata, UTC)
        tle_r_eci = output_state[obj_id]['r_GCRF'][ii]
        tle_v_eci = output_state[obj_id]['v_GCRF'][ii]
        
#        r_ecef, v_ecef = gcrf2itrf(r_eci, v_eci, UTC, EOP_data)
        
        sp3_ecef = sp3_ecef_list[ii]
        sp3_r_eci, dum = itrf2gcrf(sp3_ecef, np.zeros((3,1)), UTC, EOP_data)
        
        rho_eci = sp3_r_eci - tle_r_eci  # TLE data as chief
        rho_ric = eci2ric(tle_r_eci, tle_v_eci, rho_eci)
        rho_ric = -rho_ric  # treats SP3 data as truth
        
        ric_err[:,ii] = rho_ric.flatten()
        
        ti_hrs.append((UTC - UTC_list[0]).total_seconds()/3600.)
        
        
        if UTC >= t0 and UTC <= tf:
            
            ti_output = (UTC - t0).total_seconds()
            x_output = float(sp3_r_eci[0])
            y_output = float(sp3_r_eci[1])
            z_output = float(sp3_r_eci[2])
            next_out = np.array([[ti_output], [x_output], [y_output], [z_output]])
            
            if len(truth_out) == 0:
                truth_out = next_out.copy()
            else:            
                truth_out = np.concatenate((truth_out, next_out), axis=1)
            
            ric_out = np.insert(ric_err[:,ii], 0, ti_output)
            ric_out = np.reshape(ric_out, (4,1))
            if len(tle_ric_err) == 0:
                tle_ric_err = ric_out
            else:
                tle_ric_err = np.concatenate((tle_ric_err, ric_out), axis=1)
        
    
    print(truth_out)
    truth_df = pd.DataFrame(truth_out)
    print(truth_df)
    
#    csv_name = os.path.join(fdir, 'truth.csv')
#    truth_df.to_csv(csv_name, index=False)
    
#    csv_name2 = os.path.join(fdir, 'tle_ric_err.csv')
#    tle_ric_df = pd.DataFrame(tle_ric_err)
#    tle_ric_df.to_csv(csv_name2, index=False)
    
    print('RMS Values')
    n = len(UTC_list)
    rms_r = np.sqrt((1/n) * np.dot(ric_err[0,:], ric_err[0,:]))
    rms_i = np.sqrt((1/n) * np.dot(ric_err[1,:], ric_err[1,:]))
    rms_c = np.sqrt((1/n) * np.dot(ric_err[2,:], ric_err[2,:]))
    
    print('Radial RMS [km]:', rms_r)
    print('In-Track RMS [km]:', rms_i)
    print('Cross-Track RMS [km]:', rms_c)
    
    
        
    plt.figure()  
    plt.subplot(3,1,1)
    plt.plot(ti_hrs, ric_err[0,:], 'k.')
    plt.ylabel('Radial [km]')
    plt.ylim([-2, 2])
    plt.title('RIC Error TLE vs SP3')
    plt.subplot(3,1,2)
    plt.plot(ti_hrs, ric_err[1,:], 'k.')
    plt.ylabel('In-Track [km]')
    plt.ylim([-5, 5])
    plt.subplot(3,1,3)
    plt.plot(ti_hrs, ric_err[2,:], 'k.')
    plt.ylabel('Cross-Track [km]')
    plt.ylim([-2, 2])
    plt.xlabel('Time Since ' + UTC_list[0].strftime('%Y-%m-%d %H:%M:%S') + ' [hours]')
    
    plt.show()
        
        
        
        
        
        
        
        
        
        
        
        
#        print(UTC)
#        print('ECI \n', r_eci)
#        print('ECEF \n', r_ecef)
#        
#        sp3_ecef = np.array([[-25379.842058],[33676.622067],[51.528803]])
#        
#        print(sp3_ecef - r_ecef)
#        print(np.linalg.norm(sp3_ecef - r_ecef))
#        
#        stat_eci, dum = itrf2gcrf(stat_ecef, np.zeros((3,1)), UTC, EOP_data)
#        
#        print(stat_eci)
#        print(r_eci)
#        
#        
#        rho_eci = np.reshape(r_eci, (3,1)) - np.reshape(stat_eci, (3,1))
#        
#        print(rho_eci)
#        print(r_eci)
#        print(stat_eci)
#        
#        ra = atan2(rho_eci[1], rho_eci[0]) * 180./pi
#        
#        dec = asin(rho_eci[2]/np.linalg.norm(rho_eci)) * 180./pi
#        
#        print('tle data')
#        print(ra)
#        print(dec)
#        
#        
#        sp3_eci, dum = itrf2gcrf(sp3_ecef, np.zeros((3,1)), UTC, EOP_data)
#        
#        rho_eci2 = sp3_eci - stat_eci
#        
#        ra2 = atan2(rho_eci2[1], rho_eci2[0]) * 180./pi
#        
#        dec2 = asin(rho_eci2[2]/np.linalg.norm(rho_eci2)) * 180./pi
#        
#        print('sp3 data')
#        print(ra2)
#        print(dec2)
    
    
    
    return