Ejemplo n.º 1
0
    def handleIntersectionEntering(self):
        if (self.int_enter_state == 0):
            # first call
            self.gui.log_message("1: Centering into square")
            # begin driving forward
            if (self.intersection_forward_dist != 0):
                # Don't move if the dist is 0!
                sensors.setLeftMotor(self.int_st_speed)
                sensors.setRightMotor(self.int_st_speed)
            self.int_start_pos = self.robot.odometry.getFieldToVehicle()
            self.int_enter_state += 1
        elif (self.int_enter_state == 1):
            if (self.int_start_pos.inverse().transformBy(
                    self.robot.odometry.getFieldToVehicle()).getTranslation().
                    norm() >= self.intersection_forward_dist):
                # the current position should be approximately the center of the intersection
                sensors.setMotorOff()
                sensors.updateSensors()
                time.sleep(1)
                #self.gui.log_message("2: Centered, Searching For Hazards")
                # Log current pos as an intersection point
                map.logIntersection(
                    self.robot.odometry.getFieldToVehicle().getTranslation())

                # Transition to hazard search
                self.state = self.Drive_State_t.HAZARD_SCANNING
                self.int_enter_state = 0
Ejemplo n.º 2
0
 def handleEntering(self):
     if (self.entering_enabled):
         if (not self.started_entering):
             sensors.setLeftMotor(self.entering_fwd_speed)
             sensors.setRightMotor(self.entering_fwd_speed)
             self.started_entering = True
         else:
             if (not self.getLeftAvailable()
                     and not self.getRightAvailable()):
                 # drive until left and right see the walls
                 # motor off may be removed
                 time.sleep(0.2)
                 sensors.setMotorOff()
                 print("Entered Maze")
                 self.gui.log_message("Entered Maze")
                 map.logStartPoint(self.robot.odometry.getFieldToVehicle().transformBy( \
                                 RigidTransform2d(Translation2d(self.hallway_width/2, 0), \
                                 Rotation2d(1, 0, False))).getTranslation())
                 self.state = self.Drive_State_t.HALLWAY_FOLLOWING
                 self.started_entering = False
                 self.setHeading(0)
     else:
         print("Entering bypassed")
         self.gui.log_message("Entering Bypassed")
         self.state = self.Drive_State_t.HALLWAY_FOLLOWING
         map.logStartPoint(
             self.robot.odometry.getFieldToVehicle().getTranslation())
         self.setHeading(0)
Ejemplo n.º 3
0
    def handleIntersectionExiting(self):
        if (self.int_exit_state == 0):
            # drive forward to exit the intersection
            sensors.updateSensors()
            self.gui.log_message("6: Exiting Intersection")
            sensors.setLeftMotor(self.int_st_speed -
                                 self.getHeadingError() * self.kPHeading)
            sensors.setRightMotor(self.int_st_speed +
                                  self.getHeadingError() * self.kPHeading)
            self.int_start_pos = self.robot.odometry.getFieldToVehicle()
            self.left_was_available = self.getLeftAvailable()
            self.right_was_available = self.getRightAvailable()
            self.int_exit_state += 1
        elif (self.int_exit_state == 1):
            # Exiting Intersection State

            sensors.setLeftMotor(self.int_st_speed -
                                 self.getHeadingError() * self.kPHeading)
            sensors.setRightMotor(self.int_st_speed +
                                  self.getHeadingError() * self.kPHeading)
            # continue to check for forward wall
            if (not self.getFrontAvailable()):
                self.intersection_forward_dist = self.int_front_fwd_dist
                self.state = self.Drive_State_t.INTERSECTION_ENTERING
                self.gui.log_message(
                    "Forward closed while exiting intersection")
                sensors.setMotorOff()
                self.int_exit_state = 0
                time.sleep(1)
                return
            # check for a change in state of the sonic from wall to no wall (sides)
            if ((not self.left_was_available and self.getLeftAvailable()) or
                (not self.right_was_available and self.getRightAvailable())):
                self.intersection_forward_dist = self.int_side_fwd_dist
                self.state = self.Drive_State_t.INTERSECTION_ENTERING
                self.gui.log_message(
                    "Left or right path open while exiting intersection")
                sensors.setMotorOff()
                self.int_exit_state = 0
                time.sleep(1)
                return
            # distance between current pos and start pos
            if (self.int_start_pos.inverse().transformBy(
                    self.robot.odometry.getFieldToVehicle()).getTranslation().
                    norm() >= self.int_exit_distance):
                sensors.setMotorOff()
                sensors.updateSensors()

                # Keep going, you can do it little buddy!
                self.gui.log_message("7: Continuing Hallway Following")
                self.int_exit_state = 0
                self.setHeading(0)
                self.state = self.Drive_State_t.HALLWAY_FOLLOWING
Ejemplo n.º 4
0
 def handleTurningAround(self):
     # turn around if hazard detected in hallway
     if (self.turn_around_state == 0):
         self.setHeading(180)
         sensors.setLeftMotor(-self.int_turn_speed)
         sensors.setRightMotor(self.int_turn_speed)
         self.turn_around_state += 1
     else:
         if (math.fabs(self.getHeadingError()) <= self.int_turn_tolerance):
             # turning complete
             self.gui.log_message("Turn Around Complete")
             sensors.setMotorOff()
             self.turn_around_state = 0
             self.state = self.Drive_State_t.HALLWAY_FOLLOWING
Ejemplo n.º 5
0
 def handleDelivering(self):
     # Deliver the goods
     if (self.deliver_state == 0):
         sensors.setRampAngle(60)
         self.deliver_start_pos = self.robot.odometry.getFieldToVehicle()
         sensors.setLeftMotor(self.int_st_speed)
         sensors.setRightMotor(self.int_st_speed)
         self.deliver_state = 1
     elif (self.deliver_state == 1):
         if (self.deliver_start_pos.inverse().transformBy(
                 self.robot.odometry.getFieldToVehicle()).getTranslation().
                 norm() >= self.deliver_distance):
             sensors.setMotorOff()
             sensors.setRampAngle(0)
             self.deliver_state = 0
             self.gui.log_message("Package Delivered")
             self.state = self.Drive_State_t.IDLE
Ejemplo n.º 6
0
import sensors
import time

file_name = 'max_mag.txt'

sensors.initSensors()

max_val = 0
sensors.setLeftMotor(-0.15)
sensors.setRightMotor(0.15)

try:
    while True:
        sensors.updateSensors()
        curr = sensors.getMagneticMagnitude()
        max_val = max(curr, max_val)
        time.sleep(0.01)
except KeyboardInterrupt:
    print("Done Scanning")
    print("Max Val: ")
    print(max_val)
    sensors.shutdown()
    with open(file_name, 'w') as f:
        f.write(str(max_val))

Ejemplo n.º 7
0
heading_setpoint = Rotation2d.fromDegrees(0)
# left A Right B
def setHeading(offset):
    global heading_setpoint
    sensors.updateSensors()
    deg = odometry.getFieldToVehicle().getRotation().getDegrees()
    heading_setpoint = Rotation2d.fromDegrees(deg).rotateBy(Rotation2d.fromDegrees(offset))
    print("Heading set to: " + str(heading_setpoint))

def getHeadingError():
    current_heading = odometry.getFieldToVehicle().getRotation()
    return current_heading.inverse().rotateBy(heading_setpoint).getDegrees()

turn_speed = 0.15
sensors.setLeftMotor(-turn_speed * angle / math.fabs(angle))
sensors.setRightMotor(turn_speed * angle / math.fabs(angle))

print("Turning {:.2f} degrees".format(angle))
setHeading(angle)

turning = True
while(turning):

    sensors.updateSensors()
    odometry.updateOdometry()

    error = getHeadingError()
    print(error)

    if(math.fabs(getHeadingError()) <= 3):
Ejemplo n.º 8
0
    def handleHazardScanning(self):
        if (self.hzd_scan_state == 0):
            # begins looking for hazards in all three directions, goal is to narrow down which directions need to be scanned
            sensors.updateSensors()
            self.hzd_lt_avail = self.getLeftAvailable()
            self.hzd_rt_avail = self.getRightAvailable()
            self.hzd_ft_avail = self.getFrontAvailable()
            # check to ensure we are still in a maze
            open_count = 0
            open_count += 1 if self.hzd_lt_avail else 0
            open_count += 1 if self.hzd_rt_avail else 0
            open_count += 1 if self.hzd_ft_avail else 0
            self.gui.log_message("3: Beginning of Hazard Scanning")
            print("Left Wall: " + str(self.hzd_lt_avail) + " Fwd: " +
                  str(self.hzd_ft_avail) + " Right: " + str(self.hzd_rt_avail))
            print("Sum: " + str(open_count))
            #if(self.getLeftAvailable() or self.getRightAvailable()):
            if (self.prev_all_open and open_count > 2):  # >= 2
                # we have exited the maze lol yeet
                # exit location 1 backward and 1 to the right
                self.gui.log_message("Maze Exited")
                curr_rigid = self.robot.odometry.getFieldToVehicle()
                # current intersection
                map.removePoint(
                    curr_rigid.transformBy(
                        RigidTransform2d(Translation2d(0, -5),
                                         Rotation2d(1, 0,
                                                    False))).getTranslation())
                # previous intersection
                map.removePoint(
                    curr_rigid.transformBy(
                        RigidTransform2d(
                            Translation2d(0, -5 - self.hallway_width),
                            Rotation2d(1, 0, False))).getTranslation())
                map.logEndPoint(curr_rigid.transformBy( \
                                RigidTransform2d(Translation2d(self.hallway_width, -self.hallway_width - 5), \
                                Rotation2d(1, 0, False))).getTranslation())
                self.state = self.Drive_State_t.DELIVERING
            self.prev_all_open = open_count == 3

            hazard_detection.startDirectionalScan(not self.getLeftAvailable(),
                                                  not self.getFrontAvailable(),
                                                  not self.getRightAvailable())
            print("Left Haz: " + str(hazard_detection.leftHazardPresent()) +
                  " Front Haz: " + str(hazard_detection.frontHazardPresent()) +
                  " Right Haz: " + str(hazard_detection.rightHazardPresent()))
            self.hzd_start_rigid = self.robot.odometry.getFieldToVehicle()
            self.hzd_start_heading = self.robot.odometry.getFieldToVehicle(
            ).getRotation()
            self.hzd_scan_state += 1
        else:
            # Updates all scan directions, chooses which to update based on if heading is in correct direction
            hazard_detection.updateAllScans(
                self.robot.odometry.getFieldToVehicle().getRotation(),
                self.hzd_start_heading)

        if (self.hzd_scan_state == 1):
            # see whats left to scan
            sensors.updateSensors()
            print("Left Haz: " + str(hazard_detection.leftHazardPresent()) +
                  " Front Haz: " + str(hazard_detection.frontHazardPresent()) +
                  " Right Haz: " + str(hazard_detection.rightHazardPresent()))

            #if(hazard_detection.needToScanFwd()):

            if (hazard_detection.needToScanLeft()):
                # turn left 90
                self.hzd_turn_direction = map.Turn_Direction_Robot_t.LFT
                #self.gui.log_message("Scanning Left")
            elif (hazard_detection.needToScanRight()):
                # turn right 90
                self.hzd_turn_direction = map.Turn_Direction_Robot_t.RHT
                #self.gui.log_message("Scanning Right")
            else:
                #completely done scanning!!!
                #self.gui.log_message("4: Done scanning, turning to exit direction")
                if (self.hzd_rt_avail
                        and not hazard_detection.rightHazardPresent()):
                    self.hzd_turn_direction = map.Turn_Direction_Robot_t.RHT
                    self.gui.log_message("Turning Right")
                elif (self.hzd_ft_avail
                      and not hazard_detection.frontHazardPresent()):
                    self.hzd_turn_direction = map.Turn_Direction_Robot_t.FWD
                    self.gui.log_message("Turning Forward")
                elif (self.hzd_lt_avail
                      and not hazard_detection.leftHazardPresent()):
                    self.hzd_turn_direction = map.Turn_Direction_Robot_t.LFT
                    self.gui.log_message("Turning Left")
                else:
                    # no available dirs, turn around
                    self.hzd_turn_direction = map.Turn_Direction_Robot_t.BCK
                    self.gui.log_message("Turning Around")

            #heading_offset = self.hzd_start_heading.inverse().rotateBy(self.robot.odometry.getFieldToVehicle().getRotation())
            heading_change = self.robot.odometry.getFieldToVehicle(
            ).getRotation().inverse().rotateBy(
                self.hzd_start_heading.rotateBy(
                    Rotation2d.fromDegrees(
                        self.hzd_turn_direction))).getDegrees()
            #heading_change = Rotation2d.fromDegrees(self.hzd_turn_direction).rotateBy(heading_offset).getDegrees()
            #heading_change = round((self.hzd_turn_direction - heading_offset)/90)*90
            heading_change = round(heading_change / 90) * 90
            print("Heading Change: " + str(heading_change))
            if (math.fabs(heading_change) > 45):
                # still need to change direction
                self.setHeading(heading_change)
                self.hzd_scan_state += 1
                mult = 1
                if (heading_change < 0):
                    mult = -1
                sensors.setLeftMotor(-self.int_turn_speed * mult)
                sensors.setRightMotor(self.int_turn_speed * mult)
            else:
                # we are already at the deired location!
                # move to last step in hazard scanning
                self.hzd_scan_state += 2

        elif (self.hzd_scan_state == 2):
            # Turning
            if (math.fabs(self.getHeadingError()) <= self.int_turn_tolerance):
                # turning complete
                #self.gui.log_message("Scan Turn Complete")
                sensors.setMotorOff()
                self.hzd_scan_state = 1

        elif (self.hzd_scan_state == 3):
            # log the hazards and scram to the exit intersection mode
            #self.gui.log_message("5: Done with hazard detection")
            hazard_detection.logAllScans(self.hzd_start_rigid)
            self.state = self.Drive_State_t.INTERSECTION_EXITING
            self.hzd_scan_state = 0
Ejemplo n.º 9
0
    def handleHallwayFollowing(self):

        if (self.intersection_enabled):
            if (hazard_detection.irHazardExists()
                    or hazard_detection.magHazardExists()):
                # jeepers, get outta here!
                if (hazard_detection.irHazardExists()):
                    map.logHeatSource(
                        self.robot.odometry.getFieldToVehicle().transformBy(
                            RigidTransform2d(
                                Translation2d(
                                    hazard_detection.getIRDistanceLeft(), 0),
                                Rotation2d(1, 0, False))).getTranslation(),
                        sensors.getIRLevelLeft())
                    self.gui.log_message("IR Detected, turning around")
                if (hazard_detection.magHazardExists()):
                    map.logMagneticSource(
                        self.robot.odometry.getFieldToVehicle().transformBy(
                            RigidTransform2d(
                                Translation2d(
                                    hazard_detection.getIRDistanceLeft(), 0),
                                Rotation2d(1, 0, False))).getTranslation(),
                        sensors.getMagneticMagnitude())
                    self.gui.log_message("Mag Detected, turning around")
                self.state = self.Drive_State_t.TURNING_AROUND
                sensors.setMotorOff()
                time.sleep(1)
                return
            if (self.getLeftAvailable() or self.getRightAvailable()):
                sensors.setMotorOff()
                fwd_dist = sensors.getForwardWallDistance()
                #if(fwd_dist < 35):
                #    self.intersection_forward_dist = fwd_dist - 12
                #else:
                self.intersection_forward_dist = self.int_side_fwd_dist
                self.state = self.Drive_State_t.INTERSECTION_ENTERING
                self.gui.log_message("Left or right path open")
                time.sleep(1)
                return
            elif (not self.getFrontAvailable()):
                self.intersection_forward_dist = self.int_front_fwd_dist
                self.state = self.Drive_State_t.INTERSECTION_ENTERING
                self.gui.log_message("Forward closed")
                sensors.setMotorOff()
                time.sleep(1)
                return

        # >0 if too far to the right, <0 if too far left
        # if error >0 => correct by increasing right speed
        error = sensors.getLeftWallDistance() - sensors.getRightWallDistance()
        # use error to control difference in motor speed
        pError = error * self.kP * self.hallway_speed
        if (math.fabs(pError) > self.kLimit):
            pError = self.kLimit * (pError / math.fabs(pError))
        leftSpeed = self.hallway_speed
        rightSpeed = leftSpeed
        if (pError > 0):
            rightSpeed += pError
        else:
            leftSpeed -= pError
        # leftSpeed = self.hallway_speed - pError
        # rightSpeed = self.hallway_speed + pError

        heading_error = self.getHeadingError()
        lSpeed = self.hallway_speed - heading_error * self.kPHeading
        rSpeed = self.hallway_speed + heading_error * self.kPHeading

        #sensors.setLeftMotor(leftSpeed)
        #sensors.setRightMotor(rightSpeed)
        sensors.setLeftMotor(lSpeed)
        sensors.setRightMotor(rSpeed)
        current = odometry.getFieldToVehicle().getTranslation()
        goal_offset = current.inverse().translateBy(goal_location)
        heading_to_goal = Rotation2d(goal_offset.getX(), goal_offset.getY(),
                                     True)
        current_heading = odometry.getFieldToVehicle().getRotation()

        heading_error = current_heading.inverse().rotateBy(
            heading_to_goal).getDegrees()

        mag = sensors.getMagneticMagnitude()
        mag_error = 0
        if (mag > error_mag):
            mag_error = mag - resting_mag
            print("mag error")

        sensors.setLeftMotor(speed - heading_error * kP * speed +
                             mag_error * kMP)
        sensors.setRightMotor(speed + heading_error * kP * speed -
                              mag_error * kMP)

        #detect if within radius
        if (goal_offset.norm() <= error_radius):
            print("Navigating to point")
            sensors.setMotorOff()
            navigating = False

        time.sleep(dt)
except:
    sensors.shutdown()

sensors.shutdown()