Ejemplo n.º 1
0
def test_string_tab(net, test_data):
    net.load_state_dict(torch.load('2fac_checkpoint.pt'))
    net.eval()
    criterion = nn.MSELoss()

    testset = MyDataset(parameters=test_data['parameters'], cqt_spectrograms=test_data['cqt_spec'])
    testloader = torch.utils.data.DataLoader(testset, batch_size=4,
                                             shuffle=False, num_workers=2)
    
    inputs, targets = iter(testloader).next()
    inputs = inputs.to(device)
    targets = targets.to(device)
    
    gt_samples = []
    gt_stringNumbers = []
    gt_tabs = []
    
    for i in range(len(targets)):
        gt_stringNumber, gt_tab = targets.cpu().numpy()[i]
        guitar = Guitar(options=Options())
        gt_stringNumbers.append(gt_stringNumber)
        gt_tabs.append(gt_tab)
        #print("gt_stringNumber: %.3f, gt_tab: %.3f" % (gt_stringNumber, gt_tab))
        audio_buffer = sequencer.play_note(guitar, int(round(gt_stringNumber)), int(round(gt_tab)))
        #cqt_spec = cqt_transform.compute_cqt_spec(audio_buffer).T
        #padded_cqt = pad_zeros(cqt_spec, (cqt_spec.shape[1], cqt_spec.shape[1]))        
        gt_samples.append(audio_buffer)

    with open("2fac_gt_data.pkl", 'wb') as fh:
        data_dict = {'gt_samples' : np.array(gt_samples), 'gt_stringNumbers' : np.array(gt_stringNumbers), 'gt_tabs' : np.array(gt_tabs), 'gt_cqts' : inputs.cpu().numpy()}
        pkl.dump(data_dict, fh)
    fh.close()

    preds = net(inputs.unsqueeze_(1))
    preds = preds.detach().cpu().numpy()
    
    pred_samples = []
    pred_cqts = []
    pred_stringNumbers = []
    pred_tabs = []
    
    for i in range(preds.shape[0]):
        pred_stringNumber, pred_tab = preds[i]
        guitar = Guitar(options=Options())
        #print("pred_stringNumber: %d, pred_tab: %d" % (int(round(pred_stringNumber)), int(round(pred_tab))))
        pred_stringNumbers.append(pred_stringNumber)
        pred_tabs.append(pred_tab)
        audio_buffer = sequencer.play_note(guitar, int(round(pred_stringNumber)), int(round(pred_tab)))
        cqt_spec = cqt_transform.compute_cqt_spec(audio_buffer, n_bins=336, bins_per_octave=48, hop_length=256).T
        padded_cqt = pad_zeros(cqt_spec, (cqt_spec.shape[1], cqt_spec.shape[1]))      
        pred_cqts.append(padded_cqt.T)
        pred_samples.append(audio_buffer)
        
    with open("2fac_pred_data.pkl", 'wb') as fh:
        data_dict = {'pred_samples' : np.array(pred_samples), 'pred_stringNumbers' : np.array(pred_stringNumbers), 'pred_tabs' : np.array(pred_tabs), 'pred_cqts' : pred_cqts}
        pkl.dump(data_dict, fh)
    fh.close()
    
    print('test_loss: %.3f' % evaluate(net, testloader))
Ejemplo n.º 2
0
def sample_params_pitch_sf(size):
    freqs = np.array(utils.compute_freqs(num_frets))
    character_variation = np.array([np.random.uniform(0, 1) for _ in range(size)], dtype=np.float32)
    string_damping = np.array([np.random.uniform(0, 0.7) for _ in range(size)], dtype=np.float32)
    string_damping_variation = np.array([np.random.uniform(0, 0.5) for _ in range(size)], dtype=np.float32)
    pluck_damping = np.array([np.random.uniform(0, 0.9) for _ in range(size)], dtype=np.float32)
    pluck_damping_variation = np.array([np.random.uniform(0, 0.5) for _ in range(size)], dtype=np.float32)
    string_tension = np.array([np.random.uniform(0, 1) for _ in range(size)], dtype=np.float32)
    stereo_spread = np.array([np.random.uniform(0, 1) for _ in range(size)], dtype=np.float32)
    smoothing_factor = np.array([np.random.uniform(0.5, 1) for _ in range(size)], dtype=np.float32)
    pitch = np.array([np.random.choice(freqs) for _ in range(size)], dtype=np.float32)
    #  ipdb.set_trace()
    options = []
    guitars = []
    audio_buffers = []
    cqt_specs = []
    for i in range(size):
        options.append(Options(character_variation[i], string_damping[i], string_damping_variation[i], pluck_damping[i], pluck_damping_variation[i], 
                         string_tension[i], stereo_spread[i]))
        guitars.append(Guitar(options=options[i]))
        audio_buffers.append(sequencer.play_note(guitars[i], 0, 0, pitch[i], smoothing_factor[i]))
#        print(audio_buffers[i])
#         try:
#             cqt_spec = compute_cqt_spec(audio_buffers[i]).T
#         except ParameterError:
#             print(audio_buffers[i])
        cqt_spec = compute_cqt_spec(audio_buffers[i]).T
        padded_cqt = pad_zeros(cqt_spec, (cqt_spec.shape[1], cqt_spec.shape[1]))
        cqt_specs.append(padded_cqt)
    cqt_specs = np.array(cqt_specs, dtype=np.float32)
    print(cqt_specs.shape)
    return character_variation, string_damping, string_damping_variation, pluck_damping, pluck_damping_variation, string_tension, stereo_spread, pitch, smoothing_factor, cqt_specs
Ejemplo n.º 3
0
def save_data_hdf5(fname, size):

    print('Generating {}...'.format(fname))

    freqs = np.array(utils.compute_freqs(num_frets))
    character_variation = np.array([np.random.uniform(0, 1) for _ in range(size)], dtype=np.float32)
    string_damping = np.array([np.random.uniform(0, 0.7) for _ in range(size)], dtype=np.float32)
    string_damping_variation = np.array([np.random.uniform(0, 0.5) for _ in range(size)], dtype=np.float32)
    pluck_damping = np.array([np.random.uniform(0, 0.9) for _ in range(size)], dtype=np.float32)
    pluck_damping_variation = np.array([np.random.uniform(0, 0.5) for _ in range(size)], dtype=np.float32)
    string_tension = np.array([np.random.uniform(0, 1) for _ in range(size)], dtype=np.float32)
    stereo_spread = np.array([np.random.uniform(0, 1) for _ in range(size)], dtype=np.float32)
    smoothing_factor = np.array([np.random.uniform(0.5, 1) for _ in range(size)], dtype=np.float32)
    pitch = np.array([np.random.choice(freqs) for _ in range(size)], dtype=np.float32)

    with h5py.File(fname, 'w') as f:
        dset_parameters = f.create_dataset('parameters', (size, 9), maxshape=(None, None), dtype='float32', chunks=(size, 9))
        dset_cqt_specs = f.create_dataset('cqt_spec', (size, 336, 336), maxshape=(None, None, None), dtype='float32', chunks=(1000, 336, 336))

        dset_parameters[:] = np.array([character_variation, string_damping, string_damping_variation, pluck_damping, pluck_damping_variation, string_tension, stereo_spread, pitch, smoothing_factor]).T

        for i in range(size):
            options = Options(character_variation[i], string_damping[i], string_damping_variation[i], pluck_damping[i], pluck_damping_variation[i], string_tension[i], stereo_spread[i])
            guitar = Guitar(options=options)
            audio_buffer = sequencer.play_note(guitar, 0, 0, pitch[i], smoothing_factor[i])
            cqt_spec = compute_cqt_spec(audio_buffer).T
            padded_cqt = pad_zeros(cqt_spec, (cqt_spec.shape[1], cqt_spec.shape[1]))

            dset_cqt_specs[i, :, :] = padded_cqt

    print('Finished generating {}!'.format(fname))
Ejemplo n.º 4
0
def sample_params_string_tab(size):
    stringNumber = np.array([math.floor(np.random.choice(np.arange(0, 6))) for _ in range(size)], dtype=np.int32)
    tab = np.array([math.floor(np.random.choice(np.arange(0, 12))) for _ in range(size)], dtype=np.int32)
#     print(stringNumber)
#     print(tab)
    #  ipdb.set_trace()
    guitars = []
    audio_buffers = []
    cqt_specs = []
    for i in range(size):
        guitars.append(Guitar(options=Options()))
        audio_buffers.append(sequencer.play_note(guitars[i], stringNumber[i], tab[i]))
        cqt_spec = cqt_transform.compute_cqt_spec(audio_buffers[i], n_bins = 336, bins_per_octave=48, hop_length=256).T
        padded_cqt = pad_zeros(cqt_spec, (cqt_spec.shape[1], cqt_spec.shape[1]))
        cqt_specs.append(padded_cqt)
    cqt_specs = np.array(cqt_specs, dtype=np.float32)
    print(cqt_specs.shape)
    return stringNumber, tab, cqt_specs
Ejemplo n.º 5
0
def test_pitch_sf(net, test_data, batch_size, suffix ,testsize, factor):
    net.load_state_dict(torch.load("checkpoint" + suffix + ".pt"))
    net.eval()
    criterion = nn.MSELoss()

    testset = MyDataset(parameters=test_data['parameters'], cqt_spectrograms=test_data['cqt_spec'])
    testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,
                                             shuffle=False, num_workers=2)
    
    inputs, targets = iter(testloader).next()
    targets = np.delete(targets, 6, axis=1)
    inputs = inputs.to(device)
    targets = targets.to(device)
    
    gt_samples = []
    gt_character_variations = []
    gt_string_dampings = []
    gt_string_damping_variations = []
    gt_pluck_dampings = []
    gt_pluck_damping_variations = []
    gt_string_tensions = []
    gt_pitches = []
    gt_smoothing_factors = []
    gt_dumping_variations = []
    
    for i in range(len(targets)):
        gt_character_variation, gt_string_damping, gt_string_damping_variation, gt_pluck_damping, gt_pluck_damping_variation, gt_string_tension, gt_pitch, gt_smoothing_factor= targets.cpu().numpy()[i]
        gt_dumping_variations.append(gt_pluck_damping_variation)
        options = Options(gt_character_variation.astype(np.float64), gt_string_damping.astype(np.float64), gt_string_damping_variation.astype(np.float64), gt_pluck_damping.astype(np.float64), gt_pluck_damping_variation.astype(np.float64), gt_string_tension.astype(np.float64))
        guitar = Guitar(options=options)
        gt_character_variations.append(gt_character_variation)
        gt_string_dampings.append(gt_string_damping)
        gt_string_damping_variations.append(gt_string_damping_variation)
        gt_pluck_dampings.append(gt_pluck_damping)
        gt_pluck_damping_variations.append(gt_pluck_damping_variation)
        gt_string_tensions.append(gt_string_tension)
        gt_pitches.append(gt_pitch)
        gt_smoothing_factors.append(gt_smoothing_factor)
        #print("gt_stringNumber: %.3f, gt_tab: %.3f" % (gt_stringNumber, gt_tab))
        audio_buffer = sequencer.play_note(guitar, 0, 0, gt_pitch.astype(np.float64), gt_smoothing_factor.astype(np.float64))
        cqt_spec = compute_cqt_spec(audio_buffer).T
        padded_cqt = pad_zeros(cqt_spec, (cqt_spec.shape[1], cqt_spec.shape[1]))  
        gt_samples.append(audio_buffer)
    
    print("gt:\n")
    print(gt_character_variations)   
    print(gt_string_dampings)
    print(gt_string_damping_variations)
    print(gt_pluck_dampings)
    print(gt_pluck_damping_variations)
    print(gt_string_tensions)
    print(gt_pitches)
    print(gt_smoothing_factors)
        

    with open("gt_data" + suffix + ".pkl", 'wb') as fh:
        data_dict = {'gt_samples' : np.array(gt_samples), 'gt_character_variations': np.array(gt_character_variations) , 'gt_string_dampings' : np.array(gt_string_dampings), 'gt_string_damping_variations' : np.array(gt_string_damping_variations), 'gt_pluck_dampings' : np.array(gt_pluck_dampings), 'gt_pluck_damping_variations' : np.array(gt_pluck_damping_variations), 'gt_string_tensions' : np.array(gt_string_tensions), 
                     'gt_pitches' : np.array(gt_pitches), 'gt_smoothing_factors' : np.array(gt_smoothing_factors), 'gt_cqts' : inputs.cpu().numpy()}
        pkl.dump(data_dict, fh)
    fh.close()

    preds = net(inputs.unsqueeze_(1))
    #m = nn.Sigmoid()
    #preds = m(5 * (preds - 0.5))
    preds = preds.detach().cpu().numpy()
    
    pred_samples = []
    pred_cqts = []
    pred_character_variations = []
    pred_string_dampings = []
    pred_string_damping_variations = []
    pred_pluck_dampings = []
    pred_pluck_damping_variations = []
    pred_string_tensions = []
    pred_pitches = []
    pred_smoothing_factors = []
    pred_dumping_variations = []
    pred_log_pitches = [] 
    for i in range(preds.shape[0]):
        pred_character_variation, pred_string_damping, pred_string_damping_variation, pred_pluck_damping, pred_pluck_damping_variation, pred_string_tension, pred_pitch, pred_smoothing_factor = preds[i]
        #options = Options(pred_character_variation.astype(np.float64), pred_string_damping.astype(np.float64), pred_string_damping_variation.astype(np.float64), pred_pluck_damping.astype(np.float64), pred_pluck_damping_variation.astype(np.float64), pred_string_tension.astype(np.float64), pred_stereo_spread.astype(np.float64))
        pred_dumping_variations.append(pred_pluck_damping_variation)
        options = Options(pred_character_variation.astype(np.float64), pred_string_damping.astype(np.float64), pred_string_damping_variation.astype(np.float64), pred_pluck_damping.astype(np.float64), pred_pluck_damping_variation.astype(np.float64), pred_string_tension.astype(np.float64))
        guitar = Guitar(options=options)
        pred_character_variations.append(pred_character_variation)
        pred_string_dampings.append(pred_string_damping)
        pred_string_damping_variations.append(pred_string_damping_variation)
        pred_pluck_dampings.append(pred_pluck_damping)
        pred_pluck_damping_variations.append(pred_pluck_damping_variation)
        pred_string_tensions.append(pred_string_tension)
        pred_pitches.append(np.exp(pred_pitch))
        pred_log_pitches.append(pred_pitch)
        pred_smoothing_factors.append(pred_smoothing_factor)
        #print("gt_stringNumber: %.3f, gt_tab: %.3f" % (gt_stringNumber, gt_tab))
        audio_buffer = sequencer.play_note(guitar, 0, 0, np.exp(pred_pitch.astype(np.float64)), pred_smoothing_factor.astype(np.float64))
        #audio_buffer = sequencer.play_note(guitar, 0, 0, pred_pitch, pred_smoothing_factor)
        cqt_spec = compute_cqt_spec(audio_buffer).T
        padded_cqt = pad_zeros(cqt_spec, (cqt_spec.shape[1], cqt_spec.shape[1]))      
        pred_cqts.append(padded_cqt.T)
        pred_samples.append(audio_buffer)

    print("predicted:\n")
    print(pred_character_variations)   
    print(pred_string_dampings)
    print(pred_string_damping_variations)
    print(pred_pluck_dampings)
    print(pred_pluck_damping_variations)
    print(pred_string_tensions)
    print(pred_pitches)
    print(pred_log_pitches)	
    print(pred_smoothing_factors)
    #print(pred_dumping_variations)

        
    with open("pred_data" + suffix + ".pkl", 'wb') as fh:
        data_dict = {'pred_samples' : np.array(pred_samples), 'pred_character_variations': np.array(pred_character_variations) , 'pred_string_dampings' : np.array(pred_string_dampings), 'pred_string_damping_variations' : np.array(pred_string_damping_variations), 'pred_pluck_dampings' : np.array(pred_pluck_dampings), 'pred_pluck_damping_variations' : np.array(pred_pluck_damping_variations), 'pred_string_tensions' : np.array(pred_string_tensions), 
                     'pred_pitches' : np.array(pred_pitches), 'pred_smoothing_factors' : np.array(pred_smoothing_factors), 'pred_cqts' : pred_cqts}
        pkl.dump(data_dict, fh)
    fh.close()
    
    print('test_loss: %.3f' % evaluate(net, testloader, testsize, factor))