Ejemplo n.º 1
0
class MultiSampleSequencer:
    def __init__(self, settings: dict):
        self.transport = Sequencer(state=settings)
        self.interface = ConsoleInterface(self.transport)

    def run(self) -> None:
        self.transport.run()
Ejemplo n.º 2
0
def test_sequencer_compare():
    """
    Test an old output to ensure we don't regress
    """
    input_dir = "data/sumaila/input"
    csv_file = os.path.join(input_dir, "metrics-local.csv")
    shp_file = os.path.join(input_dir, "networks-proposed.shp")
    nwp = NetworkPlan.from_files(shp_file, csv_file, prioritize='Population')
    model = Sequencer(nwp, 'Demand...Projected.nodal.demand.per.year')

    model.sequence()

    expected_dir = "data/sumaila/expected_output"
    exp_csv_file = os.path.join(expected_dir, "sequenced-results.csv")
    exp_df = pd.read_csv(exp_csv_file)
    # exp_shp_file = os.path.join(expected_dir, "edges.shp")
    # expected_nwp = NetworkPlan(shp_file, exp_csv_file, prioritize='Population')

    # now compare results to expected
    #expected_net = expected_nwp.network
    compare_fields = ['Sequence..Vertex.id', 'Sequence..Far.sighted.sequence']

    # exp_node_dict = expected_net.nodes(data=True)
    # exp_node_tups = [tuple(map(d.get, compare_fields)) for d in exp_node_dict]
    exp_node_tups = map(tuple, exp_df[compare_fields].values)
    seq_node_tups = map(tuple, model.output_frame[compare_fields].values)
    exp_node_tups = filter(lambda tup: tup[0] > 0, exp_node_tups)
    seq_node_tups = filter(lambda tup: tup[0] > 0, seq_node_tups)
    seq_node_tups = map(lambda tup: tuple(map(int, tup)), seq_node_tups)
    # seq_node_tups = [tuple(map(seq_node_dict[d].get, compare_fields)) for d in seq_node_dict]

    assert sorted(exp_node_tups, key=lambda tup: tup[0]) == \
           sorted(seq_node_tups, key=lambda tup: tup[0]),\
           "expected nodes do not match sequenced"
Ejemplo n.º 3
0
def sequence_total_grid_mv_line_network(target_folder, infrastructure_graph):
    drafts_folder = make_folder(join(target_folder, 'drafts'))
    graph = infrastructure_graph
    if not graph.edges():
        return {}  # The network is empty and there is nothing to sequence
    node_table = get_table_from_graph(
        graph, ['longitude', 'latitude', 'population', 'peak_demand_in_kw'])
    node_table = node_table.rename(columns={'longitude': 'X', 'latitude': 'Y'})
    node_table_path = join(drafts_folder, 'nodes-sequencer.csv')
    node_table.to_csv(node_table_path)
    edge_shapefile_path = join(drafts_folder, 'edges.shp')
    nwp = NetworkPlan.from_files(edge_shapefile_path,
                                 node_table_path,
                                 prioritize='population',
                                 proj='+proj=longlat +datum=WGS84 +no_defs')
    model = Sequencer(nwp, 'peak.demand.in.kw')
    model.sequence()
    order_series = model.output_frame['Sequence..Far.sighted.sequence']
    for index, order in order_series.iteritems():
        node_id = model.output_frame['Unnamed..0'][index]
        graph.node[node_id]['grid_mv_network_connection_order'] = order
    for node1_id, node2_id, edge_d in graph.cycle_edges():
        node1_d = infrastructure_graph.node[node1_id]
        node2_d = infrastructure_graph.node[node2_id]
        edge_d['grid_mv_network_connection_order'] = min(
            node1_d.get('grid_mv_network_connection_order', float('inf')),
            node2_d.get('grid_mv_network_connection_order', float('inf')))
    return {'infrastructure_graph': graph}
Ejemplo n.º 4
0
def test_sequencer_compare():
    """
    Test an old output to ensure we don't regress
    """
    input_dir = "data/sumaila/input"
    csv_file = os.path.join(input_dir, "metrics-local.csv")
    shp_file = os.path.join(input_dir, "networks-proposed.shp")
    nwp = NetworkPlan.from_files(shp_file, csv_file, prioritize='Population')
    model = Sequencer(nwp, 'Demand...Projected.nodal.demand.per.year')

    model.sequence()

    expected_dir = "data/sumaila/expected_output"
    exp_csv_file = os.path.join(expected_dir, "sequenced-results.csv")
    exp_df = pd.read_csv(exp_csv_file)
    # exp_shp_file = os.path.join(expected_dir, "edges.shp")
    # expected_nwp = NetworkPlan(shp_file, exp_csv_file, prioritize='Population')

    # now compare results to expected
    #expected_net = expected_nwp.network
    compare_fields = ['Sequence..Vertex.id', 'Sequence..Far.sighted.sequence']

    # exp_node_dict = expected_net.nodes(data=True)
    # exp_node_tups = [tuple(map(d.get, compare_fields)) for d in exp_node_dict]
    exp_node_tups = map(tuple, exp_df[compare_fields].values)
    seq_node_tups = map(tuple, model.output_frame[compare_fields].values)
    exp_node_tups = filter(lambda tup: tup[0] > 0, exp_node_tups)
    seq_node_tups = filter(lambda tup: tup[0] > 0, seq_node_tups)
    seq_node_tups = map(lambda tup: tuple(map(int, tup)), seq_node_tups)
    # seq_node_tups = [tuple(map(seq_node_dict[d].get, compare_fields)) for d in seq_node_dict]

    assert sorted(exp_node_tups, key=lambda tup: tup[0]) == \
           sorted(seq_node_tups, key=lambda tup: tup[0]),\
           "expected nodes do not match sequenced"
Ejemplo n.º 5
0
def main():
    sequencer = Sequencer()

    sequencer.add_steps(KICK, [0, 3, 7])
    sequencer.add_steps(SNARE, [2, 6])
    sequencer.add_steps(HAT, [0, 1, 2, 3, 4, 5, 6, 7])

    while True:
        tempo = sequencer.get_tempo()

        step = sequencer.get_step()

        if len(step) == 0:
            LED_Action((25, 25, 25))
        elif len(step) == 1:
            play_sample(step[0][0])
            LED_Action(step[0][1])
        else:
            color = (0, 0, 0)
            i = 0
            for sample in step:
                if i == 0:
                    audio = sample[0]
                else:
                    audio = audio.overlay(sample[0])
                color = tuple(map(operator.add, color, sample[1]))
                i += 1

            play_sample(audio)
            LED_Action(color)

        time.sleep(tempo)
def sequence_total_grid_mv_line_network(target_folder, infrastructure_graph):
    drafts_folder = make_folder(join(target_folder, 'drafts'))
    graph = infrastructure_graph
    if not graph.edges():
        return {}  # The network is empty and there is nothing to sequence
    node_table = get_table_from_graph(graph, [
        'longitude', 'latitude', 'population', 'peak_demand_in_kw'])
    node_table = node_table.rename(columns={'longitude': 'X', 'latitude': 'Y'})
    node_table_path = join(drafts_folder, 'nodes-sequencer.csv')
    node_table.to_csv(node_table_path)
    edge_shapefile_path = join(drafts_folder, 'edges.shp')
    nwp = NetworkPlan.from_files(
        edge_shapefile_path, node_table_path, prioritize='population',
        proj='+proj=longlat +datum=WGS84 +no_defs')
    model = Sequencer(nwp, 'peak.demand.in.kw')
    model.sequence()
    order_series = model.output_frame['Sequence..Far.sighted.sequence']
    for index, order in order_series.iteritems():
        node_id = model.output_frame['Unnamed..0'][index]
        graph.node[node_id]['grid_mv_network_connection_order'] = order
    for node1_id, node2_id, edge_d in graph.cycle_edges():
        node1_d = infrastructure_graph.node[node1_id]
        node2_d = infrastructure_graph.node[node2_id]
        edge_d['grid_mv_network_connection_order'] = min(
            node1_d.get('grid_mv_network_connection_order', float('inf')),
            node2_d.get('grid_mv_network_connection_order', float('inf')))
    return {'infrastructure_graph': graph}
Ejemplo n.º 7
0
 def test_set_note_for_step_range_sets_value_and_hold_state_correctly_on_all_steps(
         self):
     sequencer = Sequencer(0, 1, 4, 4)
     sequencer.set_note_for_step_range(0, 3, 12)
     self.assertEquals(sequencer.steps[0].value, 12)
     self.assertFalse(sequencer.steps[0].is_hold)
     self.assertEquals(sequencer.steps[1].value, 12)
     self.assertTrue(sequencer.steps[1].is_hold)
     self.assertEquals(sequencer.steps[2].value, 12)
     self.assertTrue(sequencer.steps[2].is_hold)
     self.assertEquals(sequencer.steps[3].value, 12)
     self.assertTrue(sequencer.steps[3].is_hold)
Ejemplo n.º 8
0
def test_sequencer_follows_topology():
    """Tests that the sequencer doesn't skip nodes in the network"""
    nwp = get_network_plan()
    model = Sequencer(nwp, 'Demand')
    results = model.sequence()
    fnodes = results['Sequence..Upstream.id']
    node_seq_num = {node: seq_num for seq_num, node in 
                    results['Sequence..Vertex.id'].iteritems()}

    #For each from_node, assert that the sequencer has already pointed to it or its a root
    eq_(np.all([fnode in nwp.roots or node_seq_num[fnode] < seq_num 
                for seq_num, fnode in fnodes.iteritems()]), True)
Ejemplo n.º 9
0
    def __init__(self, midiController, midiInput, midiOutput debug):
        serial = spi(port=0, device=0, gpio=noop())
        self.device = max7219(serial,
                              cascaded=2,
                              rotate=1)
        print("Created device")
        self.printMsg("ESID", font=TINY_FONT)
        self.launchpad['in'] = mido.open_input(midiController)
        self.launchpad['out'] = mido.open_output(midiController)
        if debug:
            self.interface['in'] = mido.open_input()
            self.interface['out'] = mido.open_output()
        else:
            self.interface['in'] = mido.open_input(midiInput)
            self.interface['out'] = mido.open_output(midiOutput)
        self.sequences = []

        new = False
        if new:
            self.sequences.append(Sequencer(36,
                                            "KK",
                                            self.launchpad,
                                            self.interface,
                                            outgoingCC=[10,12],
                                            silent=False,
                                            new=True))
            self.sequences.append(Sequencer(38,
                                            "SD",
                                            self.launchpad,
                                            self.interface,
                                            outgoingCC=[18,19],
                                            silent=True,
                                            new=True))
            self.sequences.append(Sequencer(39,
                                            "OH",
                                            self.launchpad,
                                            self.interface,
                                            outgoingCC=[58,59],
                                            silent=True,
                                            new=True))
            self.sequences.append(Sequencer(46,
                                            "CY",
                                            self.launchpad,
                                            self.interface,
                                            outgoingCC=[50,51],
                                            silent=True,
                                            new=True))
            for seq in self.sequences:
                self.saveSequence(seq)
        else:
            self.loadSequences()
Ejemplo n.º 10
0
    def test_init_calculates_step_count_correctly(self):
        sequencer = Sequencer(0, 1, 4, 4)
        self.assertEquals(sequencer.bars, 1)
        self.assertEquals(sequencer.beats_per_bar, 4)
        self.assertEquals(sequencer.step_subdivision, 4)
        self.assertEquals(sequencer.step_count, 16)
        self.assertEquals(len(sequencer.steps.keys()), 16)

        sequencer = Sequencer(0, 4, 4, 4)
        self.assertEquals(sequencer.bars, 4)
        self.assertEquals(sequencer.beats_per_bar, 4)
        self.assertEquals(sequencer.step_subdivision, 4)
        self.assertEquals(sequencer.step_count, 64)
        self.assertEquals(len(sequencer.steps.keys()), 64)
Ejemplo n.º 11
0
def generate_beat():
  # Print a newline
  print("")
  
  # Print the header
  print(colorama.Fore.BLACK + colorama.Back.GREEN + "Enter the settings for the new beat (press ENTER for the default value)")

  # Ask for the time signature to use
  while True:
    timeSignatureInput = input("  Enter the time signature (%s): " % defaults["timeSignature"])
    timeSignature = time_signature(timeSignatureInput or defaults["timeSignature"])
    if timeSignature:
      break
    else:
      print(colorama.Fore.RED + "  Invalid time signature, make sure you use the format '7/8'. Please try again.")
  
  # Ask for the bpm to use
  while True:
    try:
      bpmInput = input("  Enter the desired BPM, between 30 and 200 (%d): " % defaults["bpm"])
      bpm = int(bpmInput or defaults["bpm"])
      if bpm < 30 or bpm > 200:
        raise ValueError
      break
    except ValueError:
      print(colorama.Fore.RED + "  Invalid number, please try again.")
  
  # Create a new sequencer and return it
  return Sequencer.generate_irregular_beat(bpm,timeSignature[0],timeSignature[1]);
Ejemplo n.º 12
0
    def opt_fun(params_values):
        sequencer = Sequencer(channels, channels_awg, awg_info, channels_delay)

        params = {}

        list_index_acc = 0
        for ii, params_key in enumerate(params_init.keys()):
            index = list_index_acc + ii
            if 'list' in params_key:
                params[params_key] = params_values[index:index +
                                                   len(params_init[params_key]
                                                       )]
                list_index_acc += len(params_init[params_key]) - 1
            else:
                params[params_key] = params_values[index]

        print("params: %s" % params)

        multiple_sequences, readout_time_list = arb_optimization_neldermead(
            sequencer, params, plot=True)

        awg_readout_time_list = get_awg_readout_time(readout_time_list)

        data, measured_data, dt = run_qutip_experiment(
            multiple_sequences, awg_readout_time_list['m8195a'], plot=True)

        Pe_list = measured_data[:, 1]

        print("Current value: %s" % Pe_list[0])

        return (1 - Pe_list[0])
Ejemplo n.º 13
0
    def __init__(self, midi_in, midi_out):
        super(Sequency, self).__init__()
        self._midi_out = midi_out
        self._midi_in = midi_in
        # Clock messages are ignored by default
        midi_in.ignore_types(timing=False)
        midi_in.set_callback(self._handle_input)

        self._lp = LaunchpadMini(midi_in, midi_out)
        self._controller = MidiToControl()

        self._boot_combo = []
        self._reboot_set = False
        self._control_mode = CONTROL_MODE.DEFAULT

        sequence_states = self._load_from_state()

        self._clock = Clock()
        self._sequences = []
        self._active_sequence = 0
        for i in range(0, 8):
            self._sequences.append(
                Sequencer(i, self._on_trigger, sequence_states[i]))

        self.start()
Ejemplo n.º 14
0
    def loadSequences(self):
        fileCount = 0
        for seqfile in sorted(os.listdir(self.sequenceDir)):
            print(seqfile)
            if fileCount == 4:
                return
            fileCount += 1

            with open(os.path.join(self.sequenceDir, seqfile), 'r', encoding='utf-8') as fp:
                data = json.load(fp)
            sequence = []
            for step in data['sequence']:
                sequence.append(Step(step['note'],
                                     step['led'],
                                     step['incommingCC'],
                                     self.launchpad['out'],
                                     step['active']))
                for cc in step['cc']:
                    sequence[-1].addCc(cc["cc"], cc["value"])
                temp = {}

            self.sequences.append(Sequencer(data['note'],
                                            data['name'],
                                            self.launchpad,
                                            self.interface,
                                            outgoingCC=data['outgoingCC'],
                                            silent=data['silent']))
            self.sequences[-1].sequence = sequence
Ejemplo n.º 15
0
def test_accumulate_demand():
    """Tests that the accumulated demand is correct"""

    nwp = get_network_plan()
    # Build dictionary of accumulated values for each node
    acc_dicts = {
        node: Sequencer(nwp, 'Demand').accumulate(node)
        for node in nwp.network.node.keys()
    }
    # Dictionary of known accumulated demand computed manually
    demands = {
        0: (100 + 50 + 25 + 12 + 6 + 3),
        1: (100 + 25 + 12),
        2: (50 + 6 + 3),
        3: 25,
        4: 12,
        5: 6,
        6: 3
    }

    # Assert that accumulate method and manual computation are equal
    eq_(
        np.all([
            acc_dicts[node]['demand'] == demands[node]
            for node in nwp.network.node.keys()
        ]), True)
Ejemplo n.º 16
0
def test_sequencer_follows_topology():
    """Tests that the sequencer doesn't skip nodes in the network"""
    nwp = get_network_plan()
    model = Sequencer(nwp, 'Demand')
    results = model.sequence()
    fnodes = results['Sequence..Upstream.id']
    node_seq_num = {
        node: seq_num
        for seq_num, node in results['Sequence..Vertex.id'].iteritems()
    }

    #For each from_node, assert that the sequencer has already pointed to it or its a root
    eq_(
        np.all([
            fnode in nwp.roots or node_seq_num[fnode] < seq_num
            for seq_num, fnode in fnodes.iteritems()
        ]), True)
Ejemplo n.º 17
0
def test_sequencer_with_fakes():
    """
    Make sure we work with fake nodes
    """
    
    # for now, just make sure it runs without exceptions
    metrics, network, node_rank, edge_rank = gen_data_with_fakes()
    nwp = NetworkPlan(network, metrics, prioritize='Population', proj='wgs4')
    model = Sequencer(nwp, 'Demand...Projected.nodal.demand.per.year')
    results = model.sequence()

    node_ids = results['Sequence..Vertex.id']
    sequence_ids = results['Sequence..Far.sighted.sequence']
    actual_node_rank = dict(zip(node_ids, sequence_ids))
    actual_edge_rank = {k: v['rank'] for k, v in 
                        model.networkplan.network.edge.iteritems()}
    assert node_rank == actual_node_rank,\
           "Node sequencing is not what was expected"
    assert edge_rank == actual_edge_rank,\
           "Edge sequencing is not what was expected"
Ejemplo n.º 18
0
    def __init__(self, platform):
        platform.add_extension(ttl_extension)

        sys_clock_pads = platform.request("clk156")
        self.clock_domains.cd_sys = ClockDomain(reset_less=True)
        self.specials += Instance("IBUFGDS",
            i_I=sys_clock_pads.p, i_IB=sys_clock_pads.n,
            o_O=self.cd_sys.clk)
        sys_clk_freq = 156000000
        self.comb += platform.request("sfp_tx_disable_n").eq(1)

        gtx = GTXReceiver(
            clock_pads=platform.request("sgmii_clock"),
            rx_pads=platform.request("sfp_rx"),
            sys_clk_freq=sys_clk_freq)
        self.submodules += gtx

        # clean up GTX clock using Si5324
        i2c_master = I2CMaster(platform.request("i2c"))
        sequencer = Sequencer(get_i2c_program(sys_clk_freq))
        si5324_clock_router = Si5324ClockRouter(platform, sys_clk_freq)
        self.submodules += i2c_master, sequencer, si5324_clock_router
        self.comb += sequencer.bus.connect(i2c_master.bus)

        # decode frames
        back_buffer = Signal(32)
        front_buffer = Signal(32)
        frame_hi = Signal()
        self.sync.rx_clean += [
            If(gtx.decoders[0].k,
                front_buffer.eq(back_buffer),
                frame_hi.eq(0)
            ).Else(
                If(frame_hi,
                    back_buffer[16:].eq(
                        Cat(gtx.decoders[0].d, gtx.decoders[1].d))
                ).Else(
                    back_buffer[:16].eq(
                        Cat(gtx.decoders[0].d, gtx.decoders[1].d))
                ),
                frame_hi.eq(1)
            )
        ]

        # drive TTLs
        self.comb += [
            platform.request("user_sma_gpio_p").eq(front_buffer[0]),
            platform.request("user_sma_gpio_n").eq(front_buffer[1])
        ]
        for i in range(8):
            self.comb += platform.request("user_led").eq(front_buffer[2+i])
        for i in range(22):
            self.comb += platform.request("ttl").eq(front_buffer[10+i])
Ejemplo n.º 19
0
def test_sequencer_with_fakes():
    """
    Make sure we work with fake nodes
    """

    # for now, just make sure it runs without exceptions
    metrics, network, node_rank, edge_rank = gen_data_with_fakes()
    nwp = NetworkPlan(network, metrics, prioritize='Population', proj='wgs4')
    model = Sequencer(nwp, 'Demand...Projected.nodal.demand.per.year')
    results = model.sequence()

    node_ids = results['Sequence..Vertex.id']
    sequence_ids = results['Sequence..Far.sighted.sequence']
    actual_node_rank = dict(zip(node_ids, sequence_ids))
    actual_edge_rank = {
        k: v['rank']
        for k, v in model.networkplan.network.edge.iteritems()
    }
    assert node_rank == actual_node_rank,\
           "Node sequencing is not what was expected"
    assert edge_rank == actual_edge_rank,\
           "Edge sequencing is not what was expected"
Ejemplo n.º 20
0
 def test_process_step_only_starts_current_note_when_previous_note_is_empty(
         self, mock_send_message, mock_get_previous_step):
     mock_get_previous_step.return_value = Note(None, is_hold=False)
     sequencer = Sequencer(0, 1, 4, 4)
     sequencer.set_midi_channel(0)
     sequencer.process_step(Note(1, is_hold=False))
     self.assertEquals(mock_send_message.call_count, 1)
     self.assertEquals(mock_send_message.call_args[0], ('NoteOn', 0, 1))
Ejemplo n.º 21
0
def fit(fold_nr, train_set, test_set, img_rows=96, img_cols=96, n_imgs=10 ** 4, batch_size=32, workers=1):
    X_train, y_train, X_test, y_test = extract_and_normalize_data(train_set, test_set)

    # Done With Preprocessing! :)

    x, y = np.meshgrid(np.arange(img_rows), np.arange(img_cols), indexing='ij')
    elastic = partial(elastic_transform, x=x, y=y, alpha=img_rows * 1.5, sigma=img_rows * 0.07)
    # we create two instances with the same arguments
    data_gen_args = dict(
        featurewise_center=False,
        featurewise_std_normalization=False,
        rotation_range=10.,
        width_shift_range=0.1,
        height_shift_range=0.1,
        horizontal_flip=True,
        vertical_flip=True,
        zoom_range=[1, 1.2],
        fill_mode='constant',
        preprocessing_function=elastic)

    training_sequence = Sequencer(X_train, y_train, sequence_size=n_imgs, batch_size=batch_size,
                                  data_gen_args=data_gen_args)

    raw_model = UNet((img_rows, img_cols, 1), start_ch=8, depth=7, batchnorm=True, dropout=0.5, maxpool=True,
                     residual=True)

    model = ModelMGPU(raw_model, 2)

    model.summary(print_fn=logging.info)
    model_checkpoint = ModelCheckpoint(
        '../data/weights-' + str(fold_nr) + '.h5', monitor='val_loss', save_best_only=True)
    metrics_callback = MetricsCallback(X_train, y_train, X_test, y_test, test_set)

    c_backs = [model_checkpoint, LoggingWriter(), metrics_callback]

    model.compile(optimizer=Adam(lr=0.001), loss=binary_crossentropy, metrics=[dice_coef])

    history = model.fit_generator(
        training_sequence,
        epochs=50,
        verbose=1,
        shuffle=True,
        validation_data=(X_test, y_test),
        callbacks=c_backs,
        workers=workers,
        use_multiprocessing=True)

    logging.info(history.history)
    plot_learning_performance(history, 'loss-' + str(fold_nr) + '.png')
    metrics_callback.save('metrics-' + str(fold_nr) + '.png')
Ejemplo n.º 22
0
    def resultsA(self):
        records = self.getRecords(self.basefile)
        if len(records) > 1:
            raise ImportError('FORMATTING ERROR in base text file');
        sequencer = Sequencer()
        results = []
        for record in records:
            record['sequence'] = record['sequence'].replace("\n", "")
            frames = list()
            for i in range (0, 3):
                sequence = sequencer.getExtrons(record,i)
                frames.append(sequence)
            result = {
                'name' : record['name'],
                'extrons' : frames.copy() 
            }
            results.append(result)
            frames.clear()
        file = open("woosh_output_a.txt", 'w')
        print('=============================== R E S U L T S ===============================')
        file.write('=============================== R E S U L T S ===============================\n')
        for result in results:
            print(result['name'])
            file.write(result['name'])
            i = 1
            for frame in result['extrons']:
                print('\n ------------ Frame ', i, ' ------------')
                file.write('\n ------------ Frame ' + str(i) + ' ------------')
                for sequence in frame:
                    print(sequence)
                    file.write(('\n' + sequence))
                i+=1
            print('**********************************************')
            file.write('\n**********************************************\n\n')


        file.close()
Ejemplo n.º 23
0
    def test01_instant(self):
        """test01_instant()

        """

        # sequ: Sequencer = Sequencer(0.1)  # sequencer with an interval of .1 sec
        # sequencer with an interval of 15.0 sec
        sequ: Sequencer = Sequencer(5.0)  # init for 5 sec delay
        self.assertAlmostEqual(5.0, sequ.delayseconds)
        self.assertEqual(20, len(sequ._to_do_sched))
        self.assertFalse(sequ.do_it_now())
        self.assertEqual(0, sequ.skipped)
        initiallastsched = sequ._to_do_sched[-1]
        cnt: int = 0
        starttime = monotonic()
        while not sequ.do_it_now():
            Sleep(0.25)
            self.assertEqual(0, sequ.skipped)
            cnt += 1

        endtime = monotonic()
        toloop = endtime - starttime
        self.assertAlmostEqual(10.0, round(toloop, 0))
        currentlastsched = sequ._to_do_sched[-1]
        delay1 = currentlastsched - initiallastsched
        self.assertAlmostEqual(5.0, delay1)
        self.assertTrue(38 < cnt < 41)
        sched: List[float] = list(sequ._to_do_sched)
        ll: List[float] = []
        for i in range(1, len(sched)):
            ll.append(sched[i] - sched[i - 1])

        self.assertEqual(5.0, mean(ll))

        sequ = Sequencer(1)  # init for 1 sec delay
        Sleep(20.5)
        self.assertEqual(20, len(sequ._to_do_sched))
        self.assertTrue(sequ.do_it_now())
        self.assertEqual(20, len(sequ._to_do_sched))
        self.assertEqual(11, sequ.skipped)

        sequ = Sequencer(5.0)  # init for 5 sec delay
        waittime: float = sequ.get_nxt_wait()
        Sleep(waittime - 0.5)
        waittime = sequ.get_nxt_wait()
        self.assertAlmostEqual(0.5, waittime, places=1)
        a = 0
Ejemplo n.º 24
0
 def test_process_steps_stops_previous_note_when_previous_note_is_hold_and_current_note_is_empty(
         self, mock_send_message, mock_get_previous_step):
     mock_get_previous_step.return_value = Note(99, is_hold=True)
     sequencer = Sequencer(0, 1, 4, 4)
     sequencer.set_midi_channel(0)
     sequencer.process_step(Note(None, is_hold=False))
     self.assertEquals(mock_send_message.call_count, 1)
     self.assertEquals(mock_send_message.call_args_list[0][0],
                       ('NoteOff', 0, 99))
Ejemplo n.º 25
0
def test():
  seq = Sequencer()
  bass = Drum(BassDrum())
  snare = Drum(SnareDrum())

  bass.get_beat(0).set_enabled(True)
  bass.get_beat(8).set_enabled(True)
  snare.get_beat(4).set_enabled(True)
  snare.get_beat(12).set_enabled(True)
  seq.add_drum(bass)
  seq.add_drum(snare)
  seq.start()
  sleep(3)
Ejemplo n.º 26
0
def test_accumulate_cost():
    """Tests that the accumulates costs are correct"""

    nwp = get_network_plan()
    # Build dictionary of accumulated values for each node
    acc_dicts = {
        node: Sequencer(nwp, 'Demand').accumulate(node)
        for node in nwp.network.node.keys()
    }

    def get_distance(f, t):
        return nwp._distance(f, t)

    # Manually compute downstream distances
    costs = {
        0:
        sum([
            get_distance(0, 1),
            get_distance(0, 2),
            get_distance(1, 3),
            get_distance(1, 4),
            get_distance(2, 5),
            get_distance(2, 6)
        ]),
        1:
        sum([get_distance(0, 1),
             get_distance(1, 3),
             get_distance(1, 4)]),
        2:
        sum([get_distance(0, 2),
             get_distance(2, 5),
             get_distance(2, 6)]),
        3:
        get_distance(1, 3),
        4:
        get_distance(1, 4),
        5:
        get_distance(2, 5),
        6:
        get_distance(2, 6)
    }

    costs = {
        node: (acc_dicts[node]['cost'], costs[node])
        for node in nwp.network.node.keys()
    }
    eq_(np.all(map(lambda tup: np.allclose(*tup), costs.values())), True)
def main():
    d = {}
    for word in open(utils.dict_file):
        d[word.strip()] = 0
    for word, ac in Sequencer(utils.train_file).Generator():
        if ac:
            d[word] += 1
    sd = set()
    for word in open('simple1000.txt'):
        sd.add(word.strip())
    arr = sorted(d.values())
    n = sum(arr)
    print 'n =', n
    chisq, p = stats.chisquare(map(lambda x: float(x) / n, arr))
    print chisq, p
    print 'avg =', float(n) / len(d)
    print 'savg = ', float(sum(d[x] for x in d.keys() if x in sd)) / 1000
Ejemplo n.º 28
0
 def build(self):
     self.initialize_app_state()
     self.sequencers = [
         Sequencer(id=_id,
                   bars=1,
                   beats_per_bar=4,
                   steps_per_beat=4,
                   midi_channel=0) for _id in range(8)
     ]
     self.active_sequencer = self.sequencers[0]
     self.sequencer_view = SequencerView()
     self.sequencer_view.menu.sequencer_spinner.values = [
         'Sequencer #{}'.format(sequencer_id)
         for sequencer_id in range(len(self.sequencers))
     ]
     self.sequencer_view.update_ui(None)
     return self.sequencer_view
Ejemplo n.º 29
0
class Test_getReadingFrame(unittest.TestCase):
    seq = Sequencer()

    def testNotFound(self):
        start = self.seq.getReadingFrame("AGGATACACACA")
        self.assertEqual(start, -1)

    def testFirstCodonStart(self):
        start = self.seq.getReadingFrame("ATGATACACACA")
        self.assertEqual(start, 0)

    def testLastCodonStart(self):
        start = self.seq.getReadingFrame("AGGATACACATG")
        self.assertEqual(start, 9)

    def testMiddleCodonStart(self):
        start = self.seq.getReadingFrame("AGATGCACACA")
        self.assertEqual(start, 2)
Ejemplo n.º 30
0
    def test_set_note_for_step_range_wont_override_a_step_that_is_already_set(
            self):
        sequencer = Sequencer(0, 1, 4, 4)
        sequencer.set_note_for_step(2, 12)
        sequencer.set_note_for_step_range(0, 3, 99)
        self.assertEquals(sequencer.steps[0].value, 99)
        self.assertFalse(sequencer.steps[0].is_hold)
        self.assertEquals(sequencer.steps[1].value, 99)
        self.assertTrue(sequencer.steps[1].is_hold)
        # Test previous step hasn't been overridden
        self.assertEquals(sequencer.steps[2].value, 12)
        self.assertFalse(sequencer.steps[2].is_hold)

        # Test next step after non-hold step is blank
        self.assertIsNone(sequencer.steps[3].value)
        self.assertFalse(sequencer.steps[3].is_hold)
Ejemplo n.º 31
0
    def opt_fun(params_values):
        sequencer = Sequencer(channels, channels_awg, awg_info, channels_delay)

        params = {}
        for ii, params_key in enumerate(params_init.keys()):
            params[params_key] = params_values[ii]

        print("params: %s" % params)

        multiple_sequences, readout_time_list = sideband_optimization_neldermead(
            sequencer, params, plot=True)

        awg_readout_time_list = get_awg_readout_time(readout_time_list)

        data, measured_data, dt = run_qutip_experiment(
            multiple_sequences, awg_readout_time_list['m8195a'], plot=True)

        Pe_list = measured_data[:, 1]

        print("Current value: %s" % Pe_list[0])

        return (Pe_list[0])
Ejemplo n.º 32
0
def main():
    # Test sur l'utilisation du programme
    if len(sys.argv) != 2:
        print("Utilisation : python3 wirefish.py <nom du fichier>")
        exit(1)

    # Récuperer les fichiers
    dirname = os.path.dirname(__file__)

    if not os.path.exists(os.path.join(dirname, '../inputs/')):
        os.makedirs(os.path.join(dirname, '../inputs/'))

    if not os.path.exists(os.path.join(dirname, '../outputs/')):
        os.makedirs(os.path.join(dirname, '../outputs/'))

    inputname = sys.argv[1]
    inputpath = os.path.join(dirname, '../inputs/' + inputname)

    outputname = sys.argv[1].replace('/', '_') + '.txt'
    outputpath = os.path.join(dirname, '../outputs/analyse_' + outputname)

    if not os.path.isfile(inputpath):
        print("{} n'existe pas ".format(inputpath))
        exit(1)

    # Construction du dictionnaire de la trace.
    trace_dict = Sequencer(get_trames_list(inputpath)).sequence()

    # A partir de trace_dict, générer le fichier texte résumant l'analyse du fichier.
    with open(outputpath, 'w') as f:
        f.write('Analyse du fichier : ' + sys.argv[1] + '\n\n' +
                get_text_output(trace_dict))

    # Construction de l'arbe de la trace à partir de trace_dict
    retval = {"name": "Fichier analysé : " + inputname, "children": []}
    tree = get_trace_tree(trace_dict, retval)

    # Afficher l'interface
    Interface(tree).main()
Ejemplo n.º 33
0
class Test_translateDNA(unittest.TestCase):
    seq = Sequencer()
    dnaSeq = {'name': 'Test Sequence', 'sequence': ""}

    def test1_basic(self):
        self.dnaSeq['sequence'] = "ATGATAATCTTTGTTGTGTAA"
        start = self.seq.getReadingFrame(self.dnaSeq['sequence'])
        protein = self.seq.translate_dna(self.dnaSeq)
        self.assertEqual(protein, "MIIFVV")

    def test2_middleStart(self):
        self.dnaSeq['sequence'] = "ATAATCTTTATGGTTGTGTAG"
        protein = self.seq.translate_dna(self.dnaSeq)
        self.assertEqual(protein, "MVV")

    def test3_earlyStop(self):
        self.dnaSeq['sequence'] = "ATGATAATCTAATTGTTGTGTAA"
        protein = self.seq.translate_dna(self.dnaSeq)
        self.assertEqual(protein, "MII")

    def test3_midStartEarlyStop(self):
        self.dnaSeq['sequence'] = "ATAATCTTTATGGTTTGAGTGTAG"
        protein = self.seq.translate_dna(self.dnaSeq)
        self.assertEqual(protein, "MV")
Ejemplo n.º 34
0
from nmigen import *
from nmigen.asserts import *
from nmigen.hdl.ast import *
from nmigen.back import pysim

from sequencer import Sequencer
from arch import Registers
from incdec import IncDec
from mcycler import MCycler
from muxing import *

if __name__ == "__main__":
    m = Module()
    m.submodules.sequencer = sequencer = Sequencer()
    m.submodules.registers = registers = Registers()
    m.submodules.mcycler = mcycler = MCycler()
    m.submodules.incdec = incdec = IncDec(16)

    addrBus = Signal(16)
    dataBus = Signal(8)

    m.d.comb += [
        mcycler.addr.eq(addrBus),
        mcycler.refresh_addr.eq(addrBus),
        mcycler.cycle.eq(sequencer.cycle),
        mcycler.extend.eq(sequencer.extend),
        mcycler.busreq.eq(0),
    ]

    m.d.comb += [
        incdec.input.eq(addrBus),
Ejemplo n.º 35
0
MAG_PAN = -1 * STEREO_WIDTH
HANNABIELL_PAN = 1 * STEREO_WIDTH

MAG_AGE_TYPE = "decay"
HANNABIELL_AGE_TYPE = "rejuvinate"

from sequencer import Sequencer
import logging

logging.basicConfig(filename="play.log",
                    level=logging.DEBUG,
                    filemode="w",
                    format="%(asctime)s - %(name)s - %(levelname)s - %(message)s")

sequencer = Sequencer()
sequencer.load_sounds("sound/*/*.wav")


# Buses

sequencer.add_bus("bubbles")
sequencer.set_bus_params("bubbles", {
        "reverb_room": 0.5,
        "reverb_mix": 0.6
        })

sequencer.add_bus("long_reverb")
sequencer.set_bus_params("long_reverb", {
        "reverb_room": 0.85,
        "reverb_mix": 0.75
        n = len(word)
        for i in xrange(27):
            if appear[i]:
                score *= self.appear_prob[n][i]
            else:
                score *= 1.0 - self.appear_prob[n][i]
        return score

    def Predict(self, word):
        if not self.predict_ready:
            raise Exception('prediction is not ready')
        if len(word) not in utils.train_range:
            return False
        return self.Score(word) > self.threshold[len(word)]


if __name__ == '__main__':
    from sequencer import Sequencer
    maid = AppearSep()
    maid.Train(Sequencer(utils.train_file).Generator())
    ac = [0] * 40
    cnt = [0] * 40
    for w, tar in Sequencer(utils.valid_file).Generator():
        if len(w) in utils.train_range:
            cnt[len(w)] += 1
            if maid.Predict(w) == tar:
                ac[len(w)] += 1
    for i in utils.train_range:
        print 'Validation', i, float(ac[i] * 100) / cnt[i]
    print 'Validation', float(sum(ac) * 100) / sum(cnt)